Genetic and biochemical analysis of the MetR activator-binding site in the metE metR control region of Salmonella typhimurium. 1989

M L Urbanowski, and G V Stauffer
Department of Microbiology, University of Iowa, Iowa City 52242.

The Salmonella typhimurium metE and metR genes share a common control region, with overlapping, divergently transcribed promoters. A double gene fusion was constructed in which the metE promoter directs expression of the Escherichia coli lacZ gene and the metR promoter directs expression of the E. coli galK gene. By using an E. coli strain lysogenized with a lambda bacteriophage carrying the metE-lacZ metR-galK double fusion (lambda Elac.Rgal), two classes of cis-acting mutations were isolated that increase metR-galK expression. The first class of mutations causes a simultaneous decrease in metE-lacZ expression by disrupting the normal MetR-mediated activation of the metE promoter. The mutations are located within a region extending from 17 to 34 base pairs upstream of the -35 region of the metE promoter. Gel mobility shift assays and DNaseI protection experiments demonstrated that the MetR protein specifically binds to a 24-base-pair region encompassing these mutations. The second class of mutations increases metR-galK expression by directly altering the promoter consensus sequences of the metE and metR promoters.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006710 Homocysteine A thiol-containing amino acid formed by a demethylation of METHIONINE. 2-amino-4-mercaptobutyric acid,Homocysteine, L-Isomer,2 amino 4 mercaptobutyric acid,Homocysteine, L Isomer,L-Isomer Homocysteine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M L Urbanowski, and G V Stauffer
September 1987, Journal of bacteriology,
M L Urbanowski, and G V Stauffer
February 1981, Journal of molecular biology,
M L Urbanowski, and G V Stauffer
June 1984, Journal of bacteriology,
M L Urbanowski, and G V Stauffer
August 1989, Biochemical and biophysical research communications,
M L Urbanowski, and G V Stauffer
April 1996, FEMS microbiology letters,
M L Urbanowski, and G V Stauffer
August 1999, Microbiology (Reading, England),
M L Urbanowski, and G V Stauffer
January 1985, Molecular & general genetics : MGG,
M L Urbanowski, and G V Stauffer
August 1984, The EMBO journal,
M L Urbanowski, and G V Stauffer
January 1989, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!