Ontogeny of neuronally released norepinephrine on renin secretion in sheep. 1989

K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
Department of Pediatrics, College of Medicine, University of Iowa, Iowa City 52242.

The role of renal nerves and norepinephrine release on renin secretion during fetal and postnatal maturation has not been studied. Experiments were performed to determine the effect of veratridine, a substance known to promote norepinephrine release from nerve terminals, on active and inactive renin secretion from renal cortical slices of fetal (134-138 days gestation; term is 145 days), newborn (4-9 days of age), and adult nonpregnant sheep. Veratridine (10-300 microM) significantly increased active renin secretion and produced a small but nonsignificant rise in inactive renin secretion in all three groups of animals (P less than 0.05). The percent rise in active renin secretion during veratridine stimulation was similar among all groups. Veratridine-stimulated (300 microM) active renin secretion was antagonized by tetrodotoxin (0.5 and 5.0 microM) and DL-propranolol (1 microM) in fetal renal cortical slices. However, neither tetrodotoxin nor propranolol completely inhibited the stimulatory effect of veratridine on active renin secretion. These results suggest that 1) norepinephrine released from nerve terminals may regulate active renin secretion early during development; 2) the effect of veratridine on active renin secretion was similar in fetal, newborn, and adult sheep; 3) veratridine had no significant effect on inactive renin secretion; and 4) active renin secretion due to depolarization of nerve terminals in fetal sheep is dependent on activation of beta-adrenoceptors as it is in adults.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
October 1988, The American journal of physiology,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
January 1988, Clinical and experimental hypertension. Part A, Theory and practice,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
June 1986, European journal of pharmacology,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
November 1993, Clinical pharmacology and therapeutics,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
February 1970, Circulation research,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
January 1983, Journal of cardiovascular pharmacology,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
September 1985, Circulation research,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
August 1996, Journal of cardiovascular pharmacology,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
March 1994, The American journal of physiology,
K T Nakamura, and J M Klinkefus, and F G Smith, and T Sato, and J E Robillard
August 1967, Circulation research,
Copied contents to your clipboard!