Lipid emulsion reverses bupivacaine-induced apoptosis of h9c2 cardiomyocytes: PI3K/Akt/GSK-3β signaling pathway. 2016

Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
Ning Xia Medical University, Yin Chuan, China. Electronic address: lvdanni19890216@163.com.

Some findings have suggested that the rescue of bupivacaine (BPV)-induced cardiotoxicity by lipid emulsion (LE) is associated with inhibition of mitochondrial permeability transition pore (mPTP). However, the mechanism of this rescue action is not clearly known. In this study, the roles of phosphoinositide 3-kinase (PI3K)/Akt and glycogen synthase kinase-3β (GSK-3β) in the molecular mechanism of LE-induced protection and its relationship with mPTP were explored. h9c2 cardiomyocytes were randomly divided into several groups: control, BPV, LE, BPV+LE. To study the effect of LE on mPTP, atractyloside (Atr, 20 μM, mPTP opener) and cyclosporine A (CsA, 10 μM, mPTP blocker) were used. To unravel whether LE protects heart through the PI3K/Akt/GSK-3β signaling pathway, cells were treated with LY294002 (LY, 30 μM, PI3K blocker) or TWS119 (TWS 10 μM, GSK-3β blocker). Later mitochondrial respiratory chain complexes, apoptosis, opening of mPTP and phosphorylation levels of Akt/GSK-3β were measured. LE significantly improved the mitochondrial functions in h9c2 cardiomyocytes. LE reversed the BPV-induced apoptosis and the opening of mPTP. The effect of LE was not only enhanced by CsA and TWS, but also abolished by Atr and LY. LE also increased the phosphorylation levels of Akt and GSK-3β. These results suggested that LE can reverse the apoptosis in cardiomyocytes by BPV and a mechanism of its action is inhibition of mPTP opening through the PI3K/Akt/GSK-3β signaling pathway.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002045 Bupivacaine A widely used local anesthetic agent. 1-Butyl-N-(2,6-dimethylphenyl)-2-piperidinecarboxamide,Bupivacain Janapharm,Bupivacain-RPR,Bupivacaina Braun,Bupivacaine Anhydrous,Bupivacaine Carbonate,Bupivacaine Hydrochloride,Bupivacaine Monohydrochloride, Monohydrate,Buvacaina,Carbostesin,Dolanaest,Marcain,Marcaine,Sensorcaine,Svedocain Sin Vasoconstr,Bupivacain RPR
D000071679 Glycogen Synthase Kinase 3 beta A glycogen synthase kinase-3 type enzyme that functions in ENERGY METABOLISM; EMBRYONIC DEVELOPMENT; and NEUROGENESIS. It is also involved in PROTEIN BIOSYNTHESIS and regulates cell growth and proliferation as a component of the WNT SIGNALING PATHWAY and other signaling pathways. Certain polymorphisms in the GSK3B gene have been associated with PARKINSON DISEASE; ALZHEIMER DISEASE; and BIPOLAR DISORDER. GSK-3beta,GSK3B Protein,GSK3beta,GSK 3beta
D000083162 Mitochondrial Permeability Transition Pore A multiprotein inner mitochondrial complex which opens only under certain pathological conditions (e.g., OXIDATIVE STRESS) uncoupling the membrane leading to APOPTOSIS and MITOCHONDRIAL TRANSMEMBRANE PERMEABILITY-DRIVEN NECROSIS particularly in CARDIOMYOCYTES during MYOCARDIAL REPERFUSION INJURY. Mitochondrial Megachannel,Mitochondrial Permeability Transition Pore (mPTP),mPTP Protein
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051336 Mitochondrial Membranes The two lipoprotein layers in the MITOCHONDRION. The outer membrane encloses the entire mitochondrion and contains channels with TRANSPORT PROTEINS to move molecules and ions in and out of the organelle. The inner membrane folds into cristae and contains many ENZYMES important to cell METABOLISM and energy production (MITOCHONDRIAL ATP SYNTHASE). Inner Mitochondrial Membrane,Mitochondrial Membrane, Inner,Mitochondrial Membrane, Outer,Outer Mitochondrial Membrane,Inner Mitochondrial Membranes,Membrane, Inner Mitochondrial,Membrane, Mitochondrial,Membrane, Outer Mitochondrial,Membranes, Inner Mitochondrial,Membranes, Mitochondrial,Membranes, Outer Mitochondrial,Mitochondrial Membrane,Mitochondrial Membranes, Inner,Mitochondrial Membranes, Outer,Outer Mitochondrial Membranes
D054715 Cardiotoxins Agents that have a damaging effect on the HEART. Such damage can occur from ALKYLATING AGENTS; FREE RADICALS; or metabolites from OXIDATIVE STRESS and in some cases is countered by CARDIOTONIC AGENTS. Induction of LONG QT SYNDROME or TORSADES DE POINTES has been the reason for viewing some drugs as cardiotoxins. Cardiotoxic Agent,Cardiotoxic Agents,Cardiotoxin,Agent, Cardiotoxic,Agents, Cardiotoxic
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases
D032383 Myocytes, Cardiac Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC). Cardiomyocytes,Muscle Cells, Cardiac,Muscle Cells, Heart,Cardiac Muscle Cell,Cardiac Muscle Cells,Cardiac Myocyte,Cardiac Myocytes,Cardiomyocyte,Cell, Cardiac Muscle,Cell, Heart Muscle,Cells, Cardiac Muscle,Cells, Heart Muscle,Heart Muscle Cell,Heart Muscle Cells,Muscle Cell, Cardiac,Muscle Cell, Heart,Myocyte, Cardiac

Related Publications

Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
January 2011, Experimental & molecular medicine,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
April 2013, Toxicology and applied pharmacology,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
July 2020, Molecular medicine reports,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
August 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
March 2021, Journal of ethnopharmacology,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
June 2012, American journal of physiology. Heart and circulatory physiology,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
January 2015, BioMed research international,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
June 2017, World journal of gastroenterology,
Danni Lv, and Zhixia Bai, and Libin Yang, and Xiaohui Li, and Xuexin Chen
April 2018, Neurochemical research,
Copied contents to your clipboard!