Left ventricular mechanical dyssynchrony in patients with coronary artery disease. 2017

Nili Zafrir
Department of Cardiology, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel. zafrirmd@isdn.net.il.

UI MeSH Term Description Entries
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D003324 Coronary Artery Disease Pathological processes of CORONARY ARTERIES that may derive from a congenital abnormality, atherosclerotic, or non-atherosclerotic cause. Arteriosclerosis, Coronary,Atherosclerosis, Coronary,Coronary Arteriosclerosis,Coronary Atherosclerosis,Left Main Coronary Artery Disease,Left Main Coronary Disease,Left Main Disease,Arterioscleroses, Coronary,Artery Disease, Coronary,Artery Diseases, Coronary,Atheroscleroses, Coronary,Coronary Arterioscleroses,Coronary Artery Diseases,Coronary Atheroscleroses,Left Main Diseases
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed
D055414 Myocardial Perfusion Imaging The creation and display of functional images showing where the blood is flowing into the MYOCARDIUM by following over time the distribution of tracers injected into the blood stream. Myocardial Scintigraphy,Scintigraphy, Myocardial,Imaging, Myocardial Perfusion,Perfusion Imaging, Myocardial

Related Publications

Nili Zafrir
August 2016, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology,
Nili Zafrir
February 1986, Journal of the American College of Cardiology,
Nili Zafrir
February 1986, Journal of the American College of Cardiology,
Nili Zafrir
October 2020, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology,
Copied contents to your clipboard!