Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro. 2016

Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America.

Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D019012 Integrin beta1 Integrin beta chain expressed as a heterodimer that is non-covalently associated with specific alpha-chains of the CD49 family (CD49a-f). It is expressed on resting and activated leukocytes and is a marker for all of the very late activation antigens on cells. (from: Barclay et al., The Leukocyte Antigen FactsBook, 1993, p164) Antigens, CD29,CD29 Antigens,4B4 Antigen,CD29 Antigen,CDw29 Antigen,beta1 Integrin,Antigen, 4B4,Antigen, CD29,Antigen, CDw29,Integrin, beta1

Related Publications

Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
June 2019, Journal of the American Society of Nephrology : JASN,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
January 2017, PloS one,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
April 2008, Kidney international,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
October 2001, Current opinion in cell biology,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
January 2013, The Journal of biological chemistry,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
August 2003, Kidney international,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
August 1995, Investigative ophthalmology & visual science,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
May 2006, The Journal of clinical investigation,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
October 1998, The Journal of membrane biology,
Rakesh Verma, and Madhusudan Venkatareddy, and Anne Kalinowski, and Sanjeevkumar R Patel, and Puneet Garg
May 2011, The Biochemical journal,
Copied contents to your clipboard!