Nonlinear analysis of cat retinal ganglion cells in the frequency domain. 1977

J D Victor, and R M Shapley, and B W Knight

We have analyzed the responses of cat retinal ganglion cells to luminosity gratings that are modulated in time by a sum of sinusoids. A judicious choice of the component temporal frequencies permits a separation of the linear and second-order nonlinear components. Y cell responses show harmonic generation and intermodulation distortion over a wide frequency range. These nonlinear components predominate over the linear components for certain types of spatial stimuli. Nonlinear components in X cells are greatly diminished in comparison. The character of the nonlinear responses provides strong constraints on prospective models for the nonlinear pathway of the Y cell.

UI MeSH Term Description Entries
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014785 Vision, Ocular The process in which light signals are transformed by the PHOTORECEPTOR CELLS into electrical signals which can then be transmitted to the brain. Vision,Light Signal Transduction, Visual,Ocular Vision,Visual Light Signal Transduction,Visual Phototransduction,Visual Transduction,Phototransduction, Visual,Transduction, Visual
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

J D Victor, and R M Shapley, and B W Knight
April 1987, The Journal of general physiology,
J D Victor, and R M Shapley, and B W Knight
November 1976, The Journal of physiology,
J D Victor, and R M Shapley, and B W Knight
January 1988, Annals of biomedical engineering,
J D Victor, and R M Shapley, and B W Knight
July 1996, Vision research,
J D Victor, and R M Shapley, and B W Knight
September 1965, Journal of neurophysiology,
J D Victor, and R M Shapley, and B W Knight
January 1989, Vision research,
J D Victor, and R M Shapley, and B W Knight
May 1972, Investigative ophthalmology,
J D Victor, and R M Shapley, and B W Knight
July 1981, Nature,
J D Victor, and R M Shapley, and B W Knight
September 1967, Journal of neurophysiology,
J D Victor, and R M Shapley, and B W Knight
July 1980, Nature,
Copied contents to your clipboard!