Diagnostic use of CK-MM and CK-MB isoforms for detecting myocardial infarction. 1989

F S Apple
Department of Laboratory Medicine, University of Minnesota Medical School, Minneapolis.

Following acute myocardial infarction, total CK and CK-MB levels begin to rise 5 to 6 hours after the onset of chest pain. The serial profile of the rise and fall of both activities is nearly always indicative of AMI. The recent increase in the use of thrombolytic agents in an attempt to attain reperfusion of occluded coronary arteries alters the enzyme profiles observed in blood after AMI. After successful reperfusion a washout phenomenon occurs in which early restoration of blood flow to damaged myocardium causes an early rise in total CK and MB levels above the normal range 2 to 4 hours after AMI, with earlier and higher peak enzyme values. Recently reports have appeared describing numerous serum and plasma CK-MM and CK-MB isoform patterns after AMI. Following release from injured myocardium CK-MM3 and CK-MB2 (designated the tissue isoforms) are converted in the circulation to post-translation products (MM2, MM1, MB1, respectively). Studies have now shown that CK-MM isoform patterns provide a unique means of assessing the time of onset of necrosis and a monitor of the duration of enzyme release from the site of injury. Following AMI, MM3, the MM3/MM1 ratio, or both rises and peaks earlier than either total CK or CK-MB levels. During successful reperfusion, the rate of rise of CK-MM3 is more rapid and the MM3/MM1 ratio peaks earlier than without reperfusion. However, any concomitant release of CK-MM3 from skeletal muscle would decrease the clinical utility of MM isoforms in detecting myocardial damage. Recent advances in technology have shown that CK-MB2 rise parallels the CK-MM increase and also rises earlier than total CK and total MB levels and provides increased specificity for the myocardium. The full potential of the diagnostic utility of MM and MB isoforms will not be realized until a reliable, sensitive, simple, and rapid quantitative assay becomes available.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D002623 Chemistry Techniques, Analytical Methodologies used for the isolation, identification, detection, and quantitation of chemical substances. Analytical Chemistry Techniques,Analytical Chemistry Methods,Analytical Chemistry Method,Analytical Chemistry Technique,Chemistry Method, Analytical,Chemistry Methods, Analytical,Chemistry Technique, Analytical,Method, Analytical Chemistry,Methods, Analytical Chemistry,Technique, Analytical Chemistry,Techniques, Analytical Chemistry
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015425 Myocardial Reperfusion Generally, restoration of blood supply to heart tissue which is ischemic due to decrease in normal blood supply. The decrease may result from any source including atherosclerotic obstruction, narrowing of the artery, or surgical clamping. Reperfusion can be induced to treat ischemia. Methods include chemical dissolution of an occluding thrombus, administration of vasodilator drugs, angioplasty, catheterization, and artery bypass graft surgery. However, it is thought that reperfusion can itself further damage the ischemic tissue, causing MYOCARDIAL REPERFUSION INJURY. Coronary Reperfusion,Reperfusion, Myocardial,Coronary Reperfusions,Myocardial Reperfusions,Reperfusion, Coronary,Reperfusions, Coronary,Reperfusions, Myocardial

Related Publications

F S Apple
April 1998, Clinica chimica acta; international journal of clinical chemistry,
F S Apple
May 1982, American journal of clinical pathology,
F S Apple
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
F S Apple
August 1999, Nihon rinsho. Japanese journal of clinical medicine,
F S Apple
November 1991, Rinsho byori. The Japanese journal of clinical pathology,
F S Apple
December 1983, American heart journal,
F S Apple
October 1989, Clinical chemistry,
F S Apple
January 1995, Rinsho byori. The Japanese journal of clinical pathology,
Copied contents to your clipboard!