Comparison of behavioral effects of nucleus basalis magnocellularis lesions and somatosensory cortex ablation in the rat. 1989

D F Wozniak, and G R Stewart, and S Finger, and J W Olney
Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110.

Cholinergic neurons in the nucleus basalis region of the forebrain project to various portions of the cerebral cortex, including somatosensory cortex. Degeneration of these neurons and their cortical projections is a major feature of the neuropathology of Alzheimer's disease. Injecting an excitotoxin into the basal forebrain to destroy nucleus basalis neurons provides a potentially useful animal model for studying the role of these neurons in Alzheimer's disease. Previously, we demonstrated that rats with nucleus basalis excitotoxin lesions performed poorly on a tactile discrimination task and on a test of working memory. In an effort to clarify further the role of impaired memory versus other types of impairment (e.g. disrupted somatosensory processing due to cholinergic deafferentation of somatosensory cortex), we compared a group of rats with bilateral nucleus basalis excitotoxin lesions and a group with bilateral somatosensory cortical ablations on a variety of behavioral tasks. Rats with nucleus basalis lesions performed as well as controls on a battery of neurological tests but exhibited increased emotionality unlike rats with somatosensory cortical ablations which performed poorly on the battery but were not hyperemotional. The two lesion groups were impaired significantly and to a comparable degree in performing two-choice tactile discriminations in a T-maze. In contrast, only rats with nucleus basalis lesions showed deficits in working memory as tested in an eight-arm radial maze. Both lesion groups performed comparably to sham controls on a test of reference memory involving a black/white discrimination in a T-maze. The findings suggest that rats with nucleus basalis lesions manifest disturbances in several of the same spheres (emotionality, somatosensory information processing, memory) that are disrupted in Alzheimer's disease and further confirm the utility of the excitotoxin lesion approach for studying the pathophysiology of Alzheimer's disease.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D004644 Emotions Those affective states which can be experienced and have arousing and motivational properties. Feelings,Regret,Emotion,Feeling,Regrets
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal

Related Publications

D F Wozniak, and G R Stewart, and S Finger, and J W Olney
January 1994, Experimental brain research,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
April 1992, Experimental neurology,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
December 1988, Brain research,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
August 1988, European journal of pharmacology,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
January 1996, Restorative neurology and neuroscience,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
January 2021, Experimental neurology,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
January 1987, Annals of the New York Academy of Sciences,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
March 1999, Mechanisms of ageing and development,
D F Wozniak, and G R Stewart, and S Finger, and J W Olney
August 1987, Brain research,
Copied contents to your clipboard!