Mitochondrial N-formyl peptides cause airway contraction and lung neutrophil infiltration via formyl peptide receptor activation. 2016

Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
Department of Physiology, Augusta University, Augusta, GA, USA. Electronic address: camillawenceslau@hotmail.com.

Respiratory failure is a common characteristic of systemic inflammatory response syndrome (SIRS) and sepsis. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns (DAMPs). Mitochondrial N-formyl peptides (F-MITs) are DAMPs that share similarities with bacterial N-formylated peptides, and are potent immune system activators. Recently, we observed that hemorrhagic shock-induced increases in plasma levels of F-MITs associated with lung damage, and that antagonism of formyl peptide receptors (FPR) ameliorated hemorrhagic shock-induced lung injury in rats. Corroborating these data, in the present study, it was observed that F-MITs expression is higher in plasma samples from trauma patients with SIRS or sepsis when compared to control trauma group. Therefore, to better understand the role of F-MITs in the regulation of lung and airway function, we studied the hypothesis that F-MITs lead to airway contraction and lung inflammation. We observed that F-MITs induced concentration-dependent contraction in trachea, bronchi and bronchioles. However, pre-treatment with mast cells degranulator or FPR antagonist decreased this response. Finally, intratracheal challenge with F-MITs increased neutrophil elastase expression in lung and inducible nitric oxide synthase and cell division control protein 42 expression in all airway segments. These data suggest that F-MITs could be a putative target to treat respiratory failure in trauma patients.

UI MeSH Term Description Entries
D008297 Male Males
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
January 2023, Cellular & molecular biology letters,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
April 2012, Biophysical journal,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
July 2017, Scientific reports,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
December 2023, Virulence,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
January 2021, Frontiers in immunology,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
September 2007, Biochimica et biophysica acta,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
January 2016, Frontiers in immunology,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
May 2001, Journal of leukocyte biology,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
February 1999, Biochemistry,
Camilla Ferreira Wenceslau, and Theodora Szasz, and Cameron G McCarthy, and Babak Baban, and Elizabeth NeSmith, and R Clinton Webb
December 2018, Free radical biology & medicine,
Copied contents to your clipboard!