Cobalamin-folate interrelations. 1989

I Chanarin, and R Deacon, and M Lumb, and J Perry
Section of Haematology, Northwick Park Hospital, Harrow, Middlesex, UK.

Cobalamin deficiency leads to impaired folate function as demonstrated by markedly impaired single-carbon unit transfer into purine, thymidine and methionine. This occurs in the total absence of 'methylH4folate trapping'. In cobalamin deficiency there is impaired synthesis of formylH4folate and raised levels of endogenous formate in blood and liver. FormylH4folate and methionine reverse the effects of cobalamin deficiency. Methionine provides formate via its metabolism to methylthioribose. Recently it has been suggested that the neuropathy of cobalamin deficiency is due to impaired methylation but this was not confirmed. It is likely that defects demonstrated in marrow and liver are also the explanation for the effects of cobalamin deficiency in the CNS.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002493 Central Nervous System Diseases Diseases of any component of the brain (including the cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the spinal cord. CNS Disease,Central Nervous System Disease,Central Nervous System Disorder,CNS Diseases,Central Nervous System Disorders
D003067 Coenzymes Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes. Coenzyme,Enzyme Cofactor,Cofactors, Enzyme,Enzyme Cofactors,Cofactor, Enzyme
D005492 Folic Acid A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Pteroylglutamic Acid,Vitamin M,Folacin,Folate,Folic Acid, (D)-Isomer,Folic Acid, (DL)-Isomer,Folic Acid, Calcium Salt (1:1),Folic Acid, Monopotassium Salt,Folic Acid, Monosodium Salt,Folic Acid, Potassium Salt,Folic Acid, Sodium Salt,Folvite,Vitamin B9,B9, Vitamin
D005494 Folic Acid Deficiency A nutritional condition produced by a deficiency of FOLIC ACID in the diet. Many plant and animal tissues contain folic acid, abundant in green leafy vegetables, yeast, liver, and mushrooms but destroyed by long-term cooking. Alcohol interferes with its intermediate metabolism and absorption. Folic acid deficiency may develop in long-term anticonvulsant therapy or with use of oral contraceptives. This deficiency causes anemia, macrocytic anemia, and megaloblastic anemia. It is indistinguishable from vitamin B 12 deficiency in peripheral blood and bone marrow findings, but the neurologic lesions seen in B 12 deficiency do not occur. (Merck Manual, 16th ed) Deficiency, Folic Acid,Acid Deficiencies, Folic,Acid Deficiency, Folic,Deficiencies, Folic Acid,Folic Acid Deficiencies
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000749 Anemia, Megaloblastic A disorder characterized by the presence of ANEMIA, abnormally large red blood cells (megalocytes or macrocytes), and MEGALOBLASTS. Anemias, Megaloblastic,Megaloblastic Anemia,Megaloblastic Anemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

I Chanarin, and R Deacon, and M Lumb, and J Perry
March 1987, Blood,
I Chanarin, and R Deacon, and M Lumb, and J Perry
May 1986, Blood,
I Chanarin, and R Deacon, and M Lumb, and J Perry
September 1993, British journal of haematology,
I Chanarin, and R Deacon, and M Lumb, and J Perry
October 1985, Clinics in haematology,
I Chanarin, and R Deacon, and M Lumb, and J Perry
October 1976, Clinics in haematology,
I Chanarin, and R Deacon, and M Lumb, and J Perry
June 1996, Clinical and laboratory haematology,
I Chanarin, and R Deacon, and M Lumb, and J Perry
September 1987, Journal of clinical pathology,
I Chanarin, and R Deacon, and M Lumb, and J Perry
September 1994, British journal of biomedical science,
I Chanarin, and R Deacon, and M Lumb, and J Perry
May 1999, Molecular genetics and metabolism,
I Chanarin, and R Deacon, and M Lumb, and J Perry
December 1987, Blood reviews,
Copied contents to your clipboard!