Developmental expression of tissue inhibitor of metalloproteinase (TIMP) RNA. 1989

S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
Department of Cell Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232.

Single-stranded antisense RNA probes have been used to study the expression of the metalloproteinase inhibitor TIMP (tissue inhibitor of metalloproteinases), during mouse embryogenesis and in adult tissues. Using a sensitive RNase protection assay, low levels of transcript can be detected in a variety of tissues, including maternal deciduum, embryonic kidney, lung and amnion. Higher levels are seen in osteogenic tissues such as calvaria, while the highest level in any tissue is found in the ovary, though even here expression is an order of magnitude below that observed in growth factor-treated fibroblasts in vitro. Using the technique of in situ hybridization, TIMP transcripts can first be detected in osteogenic tissues in the head and limb at about 15.5 days post coitum, and increase in amount until birth. The high levels of TIMP RNA in the ovary are localized to cells of the corpora lutea.

UI MeSH Term Description Entries
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015336 Molecular Probe Techniques The use of devices which use detector molecules to detect, investigate, or analyze other molecules, macromolecules, molecular aggregates, or organisms. Molecular Probe Technic,Molecular Probe Technics,Molecular Probe Technique,Technic, Molecular Probe,Technics, Molecular Probe,Technique, Molecular Probe,Techniques, Molecular Probe,Probe Technic, Molecular,Probe Technics, Molecular,Probe Technique, Molecular,Probe Techniques, Molecular

Related Publications

S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
February 2008, Oncology reports,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
January 1995, Ocular immunology and inflammation,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
October 1989, The Journal of biological chemistry,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
April 2002, Molecular human reproduction,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
October 2001, Nihon rinsho. Japanese journal of clinical medicine,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
January 1996, Journal of the American Society of Nephrology : JASN,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
May 2009, Bosnian journal of basic medical sciences,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
November 2009, Journal of neurotrauma,
S Nomura, and B L Hogan, and A J Wills, and J K Heath, and D R Edwards
August 1992, Biochemical Society transactions,
Copied contents to your clipboard!