Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis. 2016

Changzhao Li, and Mohammad Athar
Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.

This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology.

UI MeSH Term Description Entries
D009381 Neoplasms, Radiation-Induced Tumors, cancer or other neoplasms produced by exposure to ionizing or non-ionizing radiation. Radiation-Induced Cancer,Cancer, Radiation-Induced,Radiation-Induced Neoplasms,Cancer, Radiation Induced,Cancers, Radiation-Induced,Neoplasm, Radiation-Induced,Neoplasms, Radiation Induced,Radiation Induced Cancer,Radiation Induced Neoplasms,Radiation-Induced Cancers,Radiation-Induced Neoplasm
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011839 Radiation, Ionizing ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays. Ionizing Radiation,Ionizing Radiations,Radiations, Ionizing
D002280 Carcinoma, Basal Cell A malignant skin neoplasm that seldom metastasizes but has potentialities for local invasion and destruction. Clinically it is divided into types: nodular, cicatricial, morphaic, and erythematoid (pagetoid). They develop on hair-bearing skin, most commonly on sun-exposed areas. Approximately 85% are found on the head and neck area and the remaining 15% on the trunk and limbs. (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1471) Carcinoma, Basal Cell, Pigmented,Epithelioma, Basal Cell,Rodent Ulcer,Ulcer, Rodent,Basal Cell Carcinoma,Basal Cell Carcinomas,Basal Cell Epithelioma,Basal Cell Epitheliomas,Carcinomas, Basal Cell,Epitheliomas, Basal Cell,Rodent Ulcers,Ulcers, Rodent
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000069079 Radiation Exposure Phenomenon in which organisms are subjected to radiation. Exposure, Radiation
D000813 Anilides Any aromatic amide obtained by acylation of aniline.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Changzhao Li, and Mohammad Athar
August 2020, Harefuah,
Changzhao Li, and Mohammad Athar
August 1999, The British journal of dermatology,
Changzhao Li, and Mohammad Athar
February 1996, Revue medicale de Bruxelles,
Changzhao Li, and Mohammad Athar
December 1998, The British journal of ophthalmology,
Changzhao Li, and Mohammad Athar
February 1971, Voenno-meditsinskii zhurnal,
Changzhao Li, and Mohammad Athar
March 1984, The Journal of dermatologic surgery and oncology,
Changzhao Li, and Mohammad Athar
April 2015, Dermatology practical & conceptual,
Changzhao Li, and Mohammad Athar
August 2006, International journal of dermatology,
Changzhao Li, and Mohammad Athar
January 1995, Clinics in dermatology,
Changzhao Li, and Mohammad Athar
January 2009, Cancer treatment and research,
Copied contents to your clipboard!