Bidirectional radial Ca(2+) activity regulates neurogenesis and migration during early cortical column formation. 2016

Brian G Rash, and James B Ackman, and Pasko Rakic
Department of Neuroscience, Yale University, New Haven, CT 06520, USA.

Cortical columns are basic cellular and functional units of the cerebral cortex that are malformed in many brain disorders, but how they initially develop is not well understood. Using an optogenetic sensor in the mouse embryonic forebrain, we demonstrate that Ca(2+) fluxes propagate bidirectionally within the elongated fibers of radial glial cells (RGCs), providing a novel communication mechanism linking the proliferative and postmitotic zones before the onset of synaptogenesis. Our results indicate that Ca(2+) activity along RGC fibers provides feedback information along the radial migratory pathway, influencing neurogenesis and migration during early column development. Furthermore, we find that this columnar Ca(2+) propagation is induced by Notch and fibroblast growth factor activities classically implicated in cortical expansion and patterning. Thus, cortical morphogens and growth factors may influence cortical column assembly in part by regulating long-distance Ca(2+) communication along the radial axis of cortical development.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005260 Female Females
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051880 Receptors, Notch A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN REPEATS in their cytoplasmic domains. The cytoplasmic domains are released upon ligand binding and translocate to the CELL NUCLEUS, where they act as transcription factors. Notch Protein,Notch Receptor,Notch Receptors,Notch Proteins,Protein, Notch,Receptor, Notch

Related Publications

Brian G Rash, and James B Ackman, and Pasko Rakic
May 2020, EMBO reports,
Brian G Rash, and James B Ackman, and Pasko Rakic
January 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Brian G Rash, and James B Ackman, and Pasko Rakic
March 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Brian G Rash, and James B Ackman, and Pasko Rakic
January 2009, PloS one,
Brian G Rash, and James B Ackman, and Pasko Rakic
July 2011, Cerebral cortex (New York, N.Y. : 1991),
Brian G Rash, and James B Ackman, and Pasko Rakic
June 2008, Development (Cambridge, England),
Brian G Rash, and James B Ackman, and Pasko Rakic
January 2015, PloS one,
Brian G Rash, and James B Ackman, and Pasko Rakic
December 2009, Proceedings of the National Academy of Sciences of the United States of America,
Brian G Rash, and James B Ackman, and Pasko Rakic
December 2001, Journal of neuroscience research,
Brian G Rash, and James B Ackman, and Pasko Rakic
July 2022, Journal of biomedical research,
Copied contents to your clipboard!