Transport of phagosomes in mouse peritoneal macrophages. 1989

A Toyohara, and K Inaba
Biological Institute, Hyogo University of Teacher Education, Japan.

Mouse macrophages were elicited by the peritoneal injection of chondroitin sulfate solution, harvested and purified, and used as experimental materials. Small and large (diameter: 0.9 microns and 3.0 microns, respectively) polystyrene beads (PB) were used as ingested particles. When the macrophages were incubated with Hank's solution containing small or large PB for 30 min, the phagosomes containing small or large PB were usually randomly distributed. When the macrophages were further incubated for 45 min in PB-free medium, both small and large phagosomes containing PB accumulated at the perinuclear region. The transport of large phagosomes containing 3.0 microns PB was inhibited by cytochalasin B, but not by vinblastine or podophyllotoxin. Conversely, the transport of small phagosomes containing 0.9 microns PB was not inhibited by cytochalasin B but was inhibited by vinblastine or podophyllotoxin. Immunofluorescence microscopy showed that the small phagosomes appeared to accumulate at the central region of the microtubule network. The large phagosomes, on the other hand, appeared to be surrounded by actin-rich cytoplasm, and in some cells actin filament-like structures could be seen around large phagosomes. These results suggest that there are two different transport systems of phagosomes in macrophages. Phagosomes smaller than 0.9 microns in diameter are, probably, mainly transported to the perinuclear region by a microtubule-based motility system and those larger than 3.0 microns in diameter by an actin-based mechanism. It was observed electron-microscopically that accumulated phagosomes containing PB could fuse with each other and form larger phagosomes.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D010588 Phagosomes Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material. Phagolysosomes,Phagolysosome,Phagosome
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Toyohara, and K Inaba
September 1987, The Journal of biological chemistry,
A Toyohara, and K Inaba
March 1987, The Journal of experimental medicine,
A Toyohara, and K Inaba
April 1966, Journal of immunology (Baltimore, Md. : 1950),
A Toyohara, and K Inaba
January 1977, Journal of immunological methods,
Copied contents to your clipboard!