Nucleotide sequence of the regulatory nifA gene of Rhizobium leguminosarum PRE: transcriptional control sites and expression in Escherichia coli. 1989

P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
Department of Molecular Biology, Wageningen Agricultural University, The Netherlands.

We report the sequence of the regulatory nifA gene of Rhizobium leguminosarum PRE. The transcription initiation and termination sites of nifA were mapped and a potential promoter and a rho-independent terminator identified. The nifA gene has two possible translation start sites, both of which are used in an Escherichia coli background, resulting in proteins with apparent molecular weights of 58 kD and 57 kD; initiation at the second site is preferred over initiation at the first. The nifA-nifB intergenic region contains an rpoN-dependent promoter for the nifB gene but no consensus upstream activator sequence (UAS). A potential DNA-binding domain, consisting of two alpha-helices separated by a four-amino-acid linker, is located at the C-terminal end of the NifA amino acid sequence.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
March 1979, Molecular & general genetics : MGG,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
October 2004, Journal of bacteriology,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
March 1989, Journal of bacteriology,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
January 1994, Archives of microbiology,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
September 2009, Acta biochimica et biophysica Sinica,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
January 1992, Journal of bacteriology,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
December 1984, The Journal of biological chemistry,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
January 1986, Gene,
P W Roelvink, and J G Hontelez, and A van Kammen, and R C van den Bos
June 1989, Journal of bacteriology,
Copied contents to your clipboard!