Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study. 2016

Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, 01069 Dresden, Germany; Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India.

Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼ 4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002809 Chondroitin Sulfates Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate. Chondroitin 4-Sulfate,Chondroitin 6-Sulfate,Chondroitin Sulfate A,Chondroitin Sulfate C,Blutal,Chondroitin 4-Sulfate, Aluminum Salt,Chondroitin 4-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Sodium Salt,Chondroitin Sulfate,Chondroitin Sulfate 4-Sulfate, Sodium Salt,Chondroitin Sulfate, Calcium Salt,Chondroitin Sulfate, Iron (+3) Salt,Chondroitin Sulfate, Iron Salt,Chondroitin Sulfate, Potassium Salt,Chondroitin Sulfate, Sodium Salt,Chondroitin Sulfate, Zinc Salt,Chonsurid,Sodium Chondroitin Sulfate,Translagen,Chondroitin 4 Sulfate,Chondroitin 4 Sulfate, Aluminum Salt,Chondroitin 4 Sulfate, Potassium Salt,Chondroitin 6 Sulfate,Chondroitin 6 Sulfate, Potassium Salt,Chondroitin 6 Sulfate, Sodium Salt,Chondroitin Sulfate 4 Sulfate, Sodium Salt,Chondroitin Sulfate, Sodium,Sulfate, Chondroitin,Sulfate, Sodium Chondroitin,Sulfates, Chondroitin
D005780 Gelatin A product formed from skin, white connective tissue, or bone COLLAGEN. It is used as a protein food adjuvant, plasma substitute, hemostatic, suspending agent in pharmaceutical preparations, and in the manufacturing of capsules and suppositories. Gelafusal
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D016062 Porosity Condition of having pores or open spaces. This often refers to bones, bone implants, or bone cements, but can refer to the porous state of any solid substance. Porosities
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
June 2017, Materials science & engineering. C, Materials for biological applications,
Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
July 2018, International journal of biological macromolecules,
Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
October 2005, Artificial organs,
Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
April 2010, Journal of biomedical materials research. Part A,
Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
June 2007, Biomedical materials (Bristol, England),
Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
December 2015, The Indian journal of medical research,
Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
January 2010, The International journal of developmental biology,
Sirsendu Bhowmick, and Dieter Scharnweber, and Veena Koul
January 2019, International journal of nanomedicine,
Copied contents to your clipboard!