Smart pH/Redox Dual-Responsive Nanogels for On-Demand Intracellular Anticancer Drug Release. 2016

Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China.

Efficient accumulation and intracellular drug release in cancer cells remain a crucial challenge in developing ideal anticancer drug delivery systems. Here, poly(N-isopropylacrylamide)-ss-acrylic acid (P(NIPAM-ss-AA)) nanogels based on NIPAM and AA cross-linked by N,N'-bis(acryloyl)cystamine (BAC) were constructed by precipitation polymerization. The nanogels exhibited pH/redox dual responsive doxorubicin (DOX) release behavior in vitro and in tumor cells, in which DOX release from nanogels was accelerated in lysosomal pH (pH 4.5) and cytosolic reduction (10 mM GSH) conditions. Moreover, intracellular tracking of DOX-loaded nanogels confirmed that after the nanogels and the loaded DOX entered the cells simultaneously mainly via lipid raft/caveolae-mediated endocytosis, DOX-loaded nanogels were transported to lysosomes and then the loaded DOX was released to nucleus triggered by lysosomal pH and cytoplasmic high GSH. MTT analysis showed that DOX-loaded nanogels could efficiently inhibit the proliferation of HepG2 cells. In vivo animal studies demonstrated that DOX-loaded nanogels were accumulated and penetrated in tumor tissues more efficiently than free DOX. Meanwhile, DOX-loaded nanogels exhibited stronger tumor inhibition activity and fewer side effects. This study indicated that pH/redox dual-responsive nanogels might present a prospective platform for intracellular drug controlled release in cancer therapy.

UI MeSH Term Description Entries
D008297 Male Males
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003692 Delayed-Action Preparations Dosage forms of a drug that act over a period of time by controlled-release processes or technology. Controlled Release Formulation,Controlled-Release Formulation,Controlled-Release Preparation,Delayed-Action Preparation,Depot Preparation,Depot Preparations,Extended Release Formulation,Extended Release Preparation,Prolonged-Action Preparation,Prolonged-Action Preparations,Sustained Release Formulation,Sustained-Release Preparation,Sustained-Release Preparations,Timed-Release Preparation,Timed-Release Preparations,Controlled-Release Formulations,Controlled-Release Preparations,Extended Release Formulations,Extended Release Preparations,Slow Release Formulation,Sustained Release Formulations,Controlled Release Formulations,Controlled Release Preparation,Controlled Release Preparations,Delayed Action Preparation,Delayed Action Preparations,Formulation, Controlled Release,Formulations, Controlled Release,Prolonged Action Preparation,Release Formulation, Controlled,Release Formulations, Controlled,Sustained Release Preparation,Timed Release Preparation,Timed Release Preparations
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle
D056945 Hep G2 Cells A human liver tumor cell line used to study a variety of liver-specific metabolic functions. Cell Line, Hep G2,Cell Line, Hepatoblastoma G2,Hep G2 Cell Line,HepG2 Cells,Hepatoblastoma G2 Cell Line,Cell, Hep G2,Cell, HepG2,Cells, Hep G2,Cells, HepG2,Hep G2 Cell,HepG2 Cell

Related Publications

Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
February 2019, Journal of controlled release : official journal of the Controlled Release Society,
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
October 2014, Macromolecular rapid communications,
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
August 2013, Journal of controlled release : official journal of the Controlled Release Society,
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
August 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
July 2018, Chemical communications (Cambridge, England),
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
April 2019, Pharmaceutics,
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
June 2019, Journal of agricultural and food chemistry,
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
December 2019, Artificial cells, nanomedicine, and biotechnology,
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
April 2014, Chemical communications (Cambridge, England),
Hao Yang, and Qin Wang, and Shan Huang, and Ai Xiao, and Fuying Li, and Lu Gan, and Xiangliang Yang
February 2024, International journal of biological macromolecules,
Copied contents to your clipboard!