The description of a method for accurately estimating creatinine clearance in acute kidney injury. 2016

John Mellas
Department of Internal Medicine, St Mary's Health Center, 6400 Clayton Road, St Louis, Missouri, 63017, United States. Electronic address: johnmellas56@gmail.com.

BACKGROUND Acute kidney injury (AKI) is a common and serious condition encountered in hospitalized patients. The severity of kidney injury is defined by the RIFLE, AKIN, and KDIGO criteria which attempt to establish the degree of renal impairment. The KDIGO guidelines state that the creatinine clearance should be measured whenever possible in AKI and that the serum creatinine concentration and creatinine clearance remain the best clinical indicators of renal function. Neither the RIFLE, AKIN, nor KDIGO criteria estimate actual creatinine clearance. Furthermore there are no accepted methods for accurately estimating creatinine clearance (K) in AKI. METHODS The present study describes a unique method for estimating K in AKI using urine creatinine excretion over an established time interval (E), an estimate of creatinine production over the same time interval (P), and the estimated static glomerular filtration rate (sGFR), at time zero, utilizing the CKD-EPI formula. Using these variables estimated creatinine clearance (Ke)=E/P * sGFR. METHODS The method was tested for validity using simulated patients where actual creatinine clearance (Ka) was compared to Ke in several patients, both male and female, and of various ages, body weights, and degrees of renal impairment. These measurements were made at several serum creatinine concentrations in an attempt to determine the accuracy of this method in the non-steady state. In addition E/P and Ke was calculated in hospitalized patients, with AKI, and seen in nephrology consultation by the author. In these patients the accuracy of the method was determined by looking at the following metrics; E/P>1, E/P<1, E=P in an attempt to predict progressive azotemia, recovering azotemia, or stabilization in the level of azotemia respectively. In addition it was determined whether Ke<10 ml/min agreed with Ka and whether patients with AKI on renal replacement therapy could safely terminate dialysis if Ke was greater than 5 ml/min. RESULTS In the simulated patients there were 96 measurements in six different patients where Ka was compared to Ke. The estimated proportion of Ke within 30% of Ka was 0.907 with 95% exact binomial proportion confidence limits. The predictive accuracy of E/P in the study patients was also reported as a proportion and the associated 95% confidence limits: 0.848 (0.800, 0.896) for E/P<1; 0.939 (0.904, 0.974) for E/P>1 and 0.907 (0.841, 0.973) for 0.9<E/P<1.1. Ke<10 ml/min correlated very well with Ka, while Ke>5 ml/min accurately predicted the ability to terminate renal replacement therapy in AKI. CONCLUSIONS Include the need to measure urine volume accurately. Furthermore the precision of the method requires accurate estimates of sGFR, while a reasonable measure of P is crucial to estimating Ke. CONCLUSIONS The present study provides the practitioner with a new tool to estimate real time K in AKI with enough precision to predict the severity of the renal injury, including progression, stabilization, or improvement in azotemia. It is the author's belief that this simple method improves on RIFLE, AKIN, and KDIGO for estimating the degree of renal impairment in AKI and allows a more accurate estimate of K in AKI.

UI MeSH Term Description Entries
D007677 Kidney Function Tests Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine. Function Test, Kidney,Function Tests, Kidney,Kidney Function Test,Test, Kidney Function,Tests, Kidney Function
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003404 Creatinine Creatinine Sulfate Salt,Krebiozen,Salt, Creatinine Sulfate,Sulfate Salt, Creatinine
D005260 Female Females
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D055641 Mathematical Concepts Numeric or quantitative entities, descriptions, properties, relationships, operations, and events. Concept, Mathematical,Concepts, Mathematical,Mathematical Concept
D058186 Acute Kidney Injury Abrupt reduction in kidney function. Acute kidney injury encompasses the entire spectrum of the syndrome including acute kidney failure; ACUTE KIDNEY TUBULAR NECROSIS; and other less severe conditions. Acute Kidney Failure,Acute Kidney Insufficiency,Acute Renal Failure,Acute Renal Injury,Acute Renal Insufficiency,Kidney Failure, Acute,Kidney Insufficiency, Acute,Renal Failure, Acute,Renal Insufficiency, Acute,Acute Kidney Failures,Acute Kidney Injuries,Acute Kidney Insufficiencies,Acute Renal Failures,Acute Renal Injuries,Acute Renal Insufficiencies,Kidney Failures, Acute,Kidney Injuries, Acute,Kidney Injury, Acute,Kidney Insufficiencies, Acute,Renal Failures, Acute,Renal Injuries, Acute,Renal Injury, Acute,Renal Insufficiencies, Acute
Copied contents to your clipboard!