Differential effects of a short-term high-fat diet in an animal model of depression in rats treated with the 5-HT3 receptor antagonist, ondansetron, the 5-HT3 receptor agonist, 2-methyl-5-HT, and the SSRI, fluoxetine. 2016

Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, Bakersfield, CA 93311-1099, USA. Electronic address: isumaya@CSUB.edu.

Investigation into the effects of a high-fat diet on depression in the context of 5-HT3 receptor function is important given 5-HT3 antagonism may represent a novel candidate for drug discovery. To more fully understand the relationship between the 5-HT3 receptor system, depression, and high-fat intake, our main interest was to study the short-term effects of a high-fat diet on the 5-HT3 receptor antagonist, ondansetron, and the 5-HT3 receptor agonist, 2-methyl-5-HT, as well as the SSRI, fluoxetine, in an animal model of depression. Male Sprague Dawley rats were fed either a standard diet (11% fat) or a high-fat diet (32.5% fat) for seven days then treated with either fluoxetine (10mg/kg, ip), ondansetron (1mg/kg, ip), 2-methyl-5-HT (3mg/kg, ip), fluoxetine+ondansetron or, 2-methyl-5-HT+ondansetron prior to the Forced Swim Test. In the standard diet group, treatment with the 5HT3 receptor agonist, 2-methyl-5-HT, served to significantly decrease time of immobility as compared to controls thus showing anti-depressive-like effects. Treatment with the 5-HT3 receptor antagonist, ondansetron, served to enhance the anti-depressive like effects of the SSRI, fluoxetine, as treatment with both the SSRI and 5-HT3 receptor antagonist dramatically decreased immobility. Importantly, in the high-fat diet groups, a week of high-fat intake served to: 1) counteract the anti-depressive-like effect of the SSRI, fluoxetine, 2) reverse the anti-depressive-like effect of the 5HT3 receptor agonist, 2-methyl-5-HT and 3) provide protection against the depressive-like effects induced by the Forced Swim Test as rats fed a high-fat diet displayed the lowest amounts of immobility. In the aggregate, these data suggest that both SSRIs and the 5HT3 receptor system are affected by short-term high-fat intake and that a short-term high-fat diet protects against depressive-like effects in an animal model of depression.

UI MeSH Term Description Entries
D008297 Male Males
D003863 Depression Depressive states usually of moderate intensity in contrast with MAJOR DEPRESSIVE DISORDER present in neurotic and psychotic disorders. Depressive Symptoms,Emotional Depression,Depression, Emotional,Depressive Symptom,Symptom, Depressive
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005473 Fluoxetine The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants. Fluoxetin,Fluoxetine Hydrochloride,Lilly-110140,N-Methyl-gamma-(4-(trifluoromethyl)phenoxy)benzenepropanamine,Prozac,Sarafem,Lilly 110140,Lilly110140
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017294 Ondansetron A competitive serotonin type 3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties. 4H-Carbazol-4-one, 1,2,3,9-tetrahydro-9-methyl-3-((2-methyl-1H-imidazol-1-yl)methyl)-,Zofran ODT,GR-38032F,GR38032F,Ondansetron Hydrochloride,Ondansetron Monohydrochloride,Ondansetron Monohydrochloride Dihydrate,Ondansetron, (+,-)-Isomer,Ondansetron, (R)-Isomer,Ondansetron, (S)-Isomer,SN-307,Zofran,Dihydrate, Ondansetron Monohydrochloride,GR 38032F,Hydrochloride, Ondansetron,Monohydrochloride Dihydrate, Ondansetron,Monohydrochloride, Ondansetron,ODT, Zofran,SN 307,SN307
D017367 Selective Serotonin Reuptake Inhibitors Compounds that specifically inhibit the reuptake of serotonin in the brain. 5-HT Uptake Inhibitor,5-HT Uptake Inhibitors,5-Hydroxytryptamine Uptake Inhibitor,5-Hydroxytryptamine Uptake Inhibitors,SSRIs,Selective Serotonin Reuptake Inhibitor,Serotonin Reuptake Inhibitor,Serotonin Reuptake Inhibitors,Serotonin Uptake Inhibitor,Serotonin Uptake Inhibitors,Inhibitors, 5-HT Uptake,Inhibitors, 5-Hydroxytryptamine Uptake,Inhibitors, Serotonin Reuptake,Inhibitors, Serotonin Uptake,Reuptake Inhibitors, Serotonin,Uptake Inhibitors, 5-HT,Uptake Inhibitors, 5-Hydroxytryptamine,Uptake Inhibitors, Serotonin,Inhibitor, 5-HT Uptake,Inhibitor, 5-Hydroxytryptamine Uptake,Inhibitor, Serotonin Reuptake,Inhibitor, Serotonin Uptake,Reuptake Inhibitor, Serotonin,Uptake Inhibitor, 5-HT,Uptake Inhibitor, 5-Hydroxytryptamine,Uptake Inhibitor, Serotonin
D044406 Receptors, Serotonin, 5-HT3 A subclass of serotonin receptors that form cation channels and mediate signal transduction by depolarizing the cell membrane. The cation channels are formed from 5 receptor subunits. When stimulated the receptors allow the selective passage of SODIUM; POTASSIUM; and CALCIUM. Serotonin 3 Receptor,5-HT3 Receptor,5-Hydroxytryptamine-3 Receptor,Receptor, Serotonin 3,Receptor, Serotonin, 5-HT3 Subunit A,Receptor, Serotonin, 5-HT3 Subunit B,Receptor, Serotonin, 5-HT3 Subunit C,Receptor, Serotonin, 5-HT3 Subunit D,Receptor, Serotonin, 5-HT3 Subunit E,Receptor, Serotonin, 5-HT3A,Receptor, Serotonin, 5-HT3B,Receptor, Serotonin, 5-HT3C,Receptor, Serotonin, 5-HT3D,Receptor, Serotonin, 5-HT3E,Serotonin 3 Receptors,5 HT3 Receptor,5 Hydroxytryptamine 3 Receptor,Receptor, 5-Hydroxytryptamine-3,Receptors, Serotonin 3

Related Publications

Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
March 1997, Methods and findings in experimental and clinical pharmacology,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
May 1995, Synapse (New York, N.Y.),
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
August 1990, European journal of pharmacology,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
May 2009, Psychopharmacology,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
April 1990, Pharmacology, biochemistry, and behavior,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
November 2021, European review for medical and pharmacological sciences,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
July 1995, British journal of pharmacology,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
January 2019, Biochemical and biophysical research communications,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
July 1995, Neurology,
Isabel C Sumaya, and Dee Bailey, and Susan L Catlett
March 2006, Biophysical journal,
Copied contents to your clipboard!