Endothelial-to-hematopoietic transition: Notch-ing vessels into blood. 2016

Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
Department of Stem Cell and Regenerative Biology, Harvard University, Boston, Massachusetts.

During development, hematopoietic stem cells (HSCs) are formed in a temporally and spatially restricted manner, arising from specialized endothelial cells (ECs) in the ventral wall of the dorsal aorta within the evolutionary conserved aorta-gonad-mesonephros region. Our understanding of the processes regulating the birth of HSCs from ECs has been recently advanced by comprehensive molecular analyses of developing murine hematopoietic cell populations complemented by studies in the zebrafish model, with the latter offering unique advantages for genetic studies and direct in vivo visualization of HSC emergence. Here, we provide a concise review of the current knowledge and recent advances regarding the cellular origin and molecular regulation of HSC development, with particular focus on the process of endothelial-to-hematopoietic transition and its primary regulator, the Notch signaling pathway.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D051880 Receptors, Notch A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN REPEATS in their cytoplasmic domains. The cytoplasmic domains are released upon ligand binding and translocate to the CELL NUCLEUS, where they act as transcription factors. Notch Protein,Notch Receptor,Notch Receptors,Notch Proteins,Protein, Notch,Receptor, Notch
D019070 Cell Lineage The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo. Cell Lineages,Lineage, Cell,Lineages, Cell

Related Publications

Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
January 2013, Proceedings of the National Academy of Sciences of the United States of America,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
April 2016, eLife,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
September 2013, The American journal of pathology,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
August 2014, Science China. Life sciences,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
September 2010, Arteriosclerosis, thrombosis, and vascular biology,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
November 2021, Genes & development,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
September 2021, Scientific reports,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
September 2023, Developmental biology,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
May 2012, Developmental cell,
Dirk Kanz, and Martina Konantz, and Elisa Alghisi, and Trista E North, and Claudia Lengerke
December 2020, Science (New York, N.Y.),
Copied contents to your clipboard!