Phosphorylation of MafA enhances interaction with Beta2/NeuroD1. 2016

Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.

OBJECTIVE MafA is a critical regulator of insulin expression and mature β-cell function. MafA binds to the insulin promoter through its carboxyl-terminal basic domain-leucine zipper (bZip) region and activates transcription synergistically with the β-cell-enriched transactivators Beta2 (NeuroD1) and Pdx1. MafA protein is highly phosphorylated in β-cells, and phosphorylation at multiple sites within its amino-terminal region is critical for its DNA-binding and transactivating abilities, as well as for regulation of its degradation. Here, we investigated whether phosphorylation of MafA affects its interaction with Beta2. METHODS By mutational analysis, we identified interaction domains of MafA and Beta2. Using in situ proximity ligation assay (PLA), we explored mechanism of phosphorylation-dependent binding of MafA with Beta2. We also searched for a pathophysiological condition that would induce lower levels of MafA phosphorylation. RESULTS Mutational analysis revealed that the phosphorylation sites within the amino-terminal region of MafA were not necessary for interaction with Beta2. In situ PLA suggested that phosphorylation induces conformational or configurational changes in MafA, thereby regulating the interaction with Beta2. We also found that long-term culture of the MIN6 insulinoma cell line under high-glucose conditions resulted in a decrease in β-cell-specific transcripts including insulin, along with a decrease in MafA phosphorylation and DNA binding. CONCLUSIONS Phosphorylation of MafA plays a critical role in β-cell function by regulating multiple functionalities, including binding to DNA, interaction with Beta2, and transactivation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D050417 Insulin-Secreting Cells A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN. Pancreatic beta Cells,beta Cells, Pancreatic,Pancreatic B Cells,B Cell, Pancreatic,B Cells, Pancreatic,Cell, Insulin-Secreting,Cells, Insulin-Secreting,Insulin Secreting Cells,Insulin-Secreting Cell,Pancreatic B Cell,Pancreatic beta Cell,beta Cell, Pancreatic
D051258 MafB Transcription Factor A large maf protein that regulates HINDBRAIN development, contributes to CELL DIFFERENTIATION of MONOCYTES, and interacts with ETS-1 TRANSCRIPTION FACTOR. MafB Proteins,MafB Transcription Factors,Proteins, MafB,Transcription Factor, MafB,Transcription Factors, MafB

Related Publications

Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
January 1986, Nature,
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
July 2021, Journal of molecular endocrinology,
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
April 2004, Molecular endocrinology (Baltimore, Md.),
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
November 1997, Molecular and cellular biology,
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
June 2014, Diabetes research and clinical practice,
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
August 2004, Molecular neurobiology,
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
November 2012, FEBS letters,
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
August 2013, Endocrine,
Song-Iee Han, and Yukino Tsunekage, and Kohsuke Kataoka
November 2000, Genes & development,
Copied contents to your clipboard!