Irreversible and quaternary muscarinic antagonists discriminate multiple muscarinic receptor binding sites in rat brain. 1989

A B Norman, and J H Eubanks, and I Creese
Department of Psychiatry, University of Cincinnati College of Medicine, Ohio.

The maximal number of binding sites (Bmax) of [3H]quinuclidinyl benzilate (QNB) binding was greater than the Bmax of N-[3H]methylscopolamine (NMS) binding to homogenates of rat brain. The competition of NMS for [3H]QNB demonstrated that NMS discriminates multiple muscarinic binding sites. Similarly, pirenzepine competition of [3H]QNB binding also revealed multiple muscarinic binding sites. Pirenzepine competition for [3H]NMS also was shallow and demonstrated the presence of binding sites with similar affinities to those labeled by [3H]QNB. These data were consistent with the presence of at least three populations of muscarinic binding sites with similar affinities for [3H]QNB: the M1 and M2 binding sites having high and low affinity for pirenzepine, respectively, but which cannot be discriminated by [3H]NMS, and a third site with high affinity for [3H]QNB which has low affinity for NMS. The classical muscarinic antagonists, atropine and scopolamine, also appear to have slightly different affinities for the putative M1 and M2 binding sites. The use of the irreversible antagonists, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) and propylbenzilylcholine mustard (PBCM), were used to elucidate the distinct properties of these multiple muscarinic binding sites. Both PBCM and EEDQ irreversibly decreased the Bmax of [3H]QNB and [3H]NMS binding in cortex. PBCM did not appear to discriminate putative M1 and M2 binding sites but selectively alkylated the high affinity NMS and QNB binding sites. In contrast, EEDQ modified the low affinity NMS binding sites such that they still bound [3H]QNB but their affinity for other muscarinic antagonists was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D011438 Propylbenzilylcholine Mustard An analog of benzilylcholine mustard. It is an alkylating nitrogen mustard analog that binds specifically and irreversibly to cholinergic muscarinic receptors and is used as an affinity label to isolate and study the receptors. PRBCM,Mustard, Propylbenzilylcholine
D011804 Quinolines
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A B Norman, and J H Eubanks, and I Creese
January 1991, Archives internationales de pharmacodynamie et de therapie,
A B Norman, and J H Eubanks, and I Creese
February 1989, British journal of pharmacology,
A B Norman, and J H Eubanks, and I Creese
June 1985, The Journal of pharmacology and experimental therapeutics,
A B Norman, and J H Eubanks, and I Creese
October 1990, European journal of pharmacology,
A B Norman, and J H Eubanks, and I Creese
April 1978, Biochemical and biophysical research communications,
A B Norman, and J H Eubanks, and I Creese
January 1991, Archives internationales de pharmacodynamie et de therapie,
A B Norman, and J H Eubanks, and I Creese
September 1993, Neuropharmacology,
A B Norman, and J H Eubanks, and I Creese
November 1976, British journal of pharmacology,
A B Norman, and J H Eubanks, and I Creese
July 1981, European journal of pharmacology,
Copied contents to your clipboard!