Relaxin and insulin-like peptide 3 in the musculoskeletal system: from bench to bedside. 2017

Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy.

Skeletal muscles and bones form a joined functional unit sharing a complex mechanical, biochemical and hormonal crosstalk. A number of factors, including sex hormones, physiologically regulate the musculoskeletal system. Striking gender differences in muscle and bone mass, and function are mainly caused by distinct actions exerted by oestrogens and androgens. However, relaxin and relaxin-related peptides, such as insulin-like peptide 3 (INSL3), might contribute to these sex-associated differences in physiological and pathological conditions (such as osteoporosis and sarcopenia). Relaxin is a 'pregnancy' hormone, but it is also produced from the prostate gland, and has recently attracted attention as a potential drug for cardiovascular disorders and fibrosis. In contrast, INSL3 is a male-specific hormone produced by the Leydig cells of the testis with a fundamental role in testicular descent during fetal life. Recent evidence suggests that both hormones have interesting roles in the musculoskeletal system. Relaxin and INSL3, by finely tuning bone formation and resorption, are involved in bone remodelling processes, and relaxin contributes to the healing of injured ligaments and promotes skeletal muscle regeneration. Here, we review the most recent findings on the effects of relaxin and INSL3 on skeletal muscle and the cell components of bone. In the light of the experimental evidence available and animal models, their clinical implications are also discussed. This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D012065 Relaxin A water-soluble polypeptide (molecular weight approximately 8,000) extractable from the corpus luteum of pregnancy. It produces relaxation of the pubic symphysis and dilation of the uterine cervix in certain animal species. Its role in the human pregnant female is uncertain. (Dorland, 28th ed) Relaxin B
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
June 2018, American journal of physiology. Regulatory, integrative and comparative physiology,
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
September 2021, Diabetes, obesity & metabolism,
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
June 2017, Scientific reports,
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
August 2017, Clinical liver disease,
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
August 2003, Clinical science (London, England : 1979),
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
February 2018, Sheng li xue bao : [Acta physiologica Sinica],
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
March 2008, Endocrinology,
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
February 2003, American heart journal,
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
May 2005, Annals of the New York Academy of Sciences,
Alberto Ferlin, and Luca De Toni, and Marco Sandri, and Carlo Foresta
September 2020, Journal of clinical medicine,
Copied contents to your clipboard!