Effect of preganglionic stimulation or chronic decentralization on neurotensin-like immunoreactivity in sympathetic ganglia of the cat. 1989

M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
Department of Physiology, McGill University, Montreal, Que., Canada.

In pentobarbital-anesthetized cats, supramaximal stimulation (40 Hz, 2 h) of the preganglionic input to the acutely decentralized right stellate (RSG) or superior cervical (RSCG) ganglion resulted in a decrease in neurotensin (NT)-like immunoreactivity (IR), by 83% in the SG and by 46% in the SCG, as determined by radioimmunoassay. Chronic (7 days) decentralization of the ganglia resulted in a similar depletion of NT-like IR (SG: 86%; SCG: 76%). Supramaximal stimulation (40 Hz, 2 h) of the intact postganglionic outflow of either ganglion had no effect on NT-like IR. These data suggest that NT in the SG and SCG is present in preganglionic axons and is released by activation of these axons.

UI MeSH Term Description Entries
D008297 Male Males
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001339 Autonomic Fibers, Preganglionic NERVE FIBERS which project from the central nervous system to AUTONOMIC GANGLIA. In the sympathetic division most preganglionic fibers originate with neurons in the intermediolateral column of the SPINAL CORD, exit via ventral roots from upper thoracic through lower lumbar segments, and project to the paravertebral ganglia; there they either terminate in SYNAPSES or continue through the SPLANCHNIC NERVES to the prevertebral ganglia. In the parasympathetic division the fibers originate in neurons of the BRAIN STEM and sacral spinal cord. In both divisions the principal transmitter is ACETYLCHOLINE but peptide cotransmitters may also be released. Autonomic Fiber, Preganglionic,Fiber, Preganglionic Autonomic,Fibers, Preganglionic Autonomic,Preganglionic Autonomic Fiber,Preganglionic Autonomic Fibers

Related Publications

M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
January 1982, Acta physiologica Scandinavica,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
January 1987, Brain research,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
January 1983, Neuroscience,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
April 1971, Science (New York, N.Y.),
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
January 1989, Acta anatomica,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
July 1987, Cell and tissue research,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
October 1962, The Journal of pharmacology and experimental therapeutics,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
September 1983, Brain research,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
May 1985, Brain research,
M M Caverson, and M Bachoo, and J Ciriello, and C Polosa
January 1984, Nature,
Copied contents to your clipboard!