Candida lipolytica mutants defective in an acyl-coenzyme A synthetase: isolation and fatty acid metabolism. 1977

T Kamiryo, and M Mishina, and S I Tashiro, and S Numa

Mutant strains of Candida lipolytica defective in an acyl-CoA synthetase [acid:CoA ligase (AMP-forming); EC 6.2.1.3]were isolated. The mutant strains apparently exhibited no acyl-CoA synthetase activity in vitro and were, in contrast to the wild-type strain, incapable of growing in the presence of exogenous fatty acid when cellular synthesis de novo of fatty acid was blocked. However, the mutant strains grew on either fatty acid or n-alkane as a sole carbon source at rates comparable to that observed for the wild-type strain. Analysis of the fatty acid composition of the lipids from the mutant cells grown on odd-chain-length fatty acid as well as [14C]oleic acid incorporation studies have shown that the mutant cells, unlike the wild-type cells, cannot incorporate exogenous fatty acid as a whole into cellular lipids, but utilize the fatty acid that is synthesized de novo from acetyl-CoA produced by degradation of exogenous fatty acid. This finding indicates the presence of at least two acyl-CoA synthetases that activate long-chain fatty acid. One, designated acyl-CoA synthetase I, which is absent in the mutant strains, is responsible for the production of acyl-CoA to be utilized for the synthesis of cellular lipids. The other acyl-CoA synthetase provides actyl-CoA that is exclusively degraded via beta-oxidation to yield acetyl-CoA.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

T Kamiryo, and M Mishina, and S I Tashiro, and S Numa
March 1992, Yeast (Chichester, England),
T Kamiryo, and M Mishina, and S I Tashiro, and S Numa
November 1978, Journal of biochemistry,
T Kamiryo, and M Mishina, and S I Tashiro, and S Numa
December 2016, Applied microbiology and biotechnology,
T Kamiryo, and M Mishina, and S I Tashiro, and S Numa
October 2003, European journal of cell biology,
T Kamiryo, and M Mishina, and S I Tashiro, and S Numa
July 1986, Biochemical and biophysical research communications,
T Kamiryo, and M Mishina, and S I Tashiro, and S Numa
August 2005, Biochemistry,
T Kamiryo, and M Mishina, and S I Tashiro, and S Numa
March 2016, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih,
Copied contents to your clipboard!