Lamin B methylation and assembly into the nuclear envelope. 1989

D Chelsky, and C Sobotka, and C L O'Neill
Central Research and Development Department, E. I. du Pont de Nemours & Company, Wilmington, Delaware 19898.

Lamin B is reversibly methyl-esterified and phosphorylated during the mammalian cell cycle. In order to study the role of methylation in lamin B function, we isolated mitotic cells in the presence of the microtubule inhibitor, nocodazole. Following removal of nocodazole, methylation of mitotic lamin B was found to precede its assembly into the nuclear envelope as cells exited mitosis. Very little additional methylation took place on assembled lamins. We were able to slow the rate of lamin B methylation with methylthioadenosine (MTA). A delay in lamin B methylation was accompanied by a corresponding delay in assembly of lamin B into the envelope. The delay was approximately 20-30 min beyond the typical 60-70 min usually required. Assembly of lamins A and C, which are not methylated, was also delayed by MTA, although to a lesser degree, suggesting that an interaction between the lamins is necessary for formation of the nuclear envelope. Chromatin decondensation was also slowed in the presence of MTA. Other inhibitors of methylation which had no inhibitory effect on the methyl esterification of lamin B were tested and found to have no effect on envelope assembly or chromatin decondensation. These results were obtained with Chinese hamster ovary cells as well as with the stem cell line, PC 13. Dephosphorylation of lamin B normally follows a time course similar to that of nuclear envelope assembly. In the presence of MTA, however, lamin B assembly was slowed with little effect on dephosphorylation. This resulted in a large population of dephosphorylated, but unassembled, lamin B protein, demonstrating that dephosphorylation is not sufficient for envelope assembly. The lack of effect on the time course of dephosphorylation also suggests that MTA is not acting upstream of the methylation event.

UI MeSH Term Description Entries
D007526 Isoelectric Point The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum. Isoelectric Points,Point, Isoelectric,Points, Isoelectric
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009685 Nuclear Envelope The membrane system of the CELL NUCLEUS that surrounds the nucleoplasm. It consists of two concentric membranes separated by the perinuclear space. The structures of the envelope where it opens to the cytoplasm are called the nuclear pores (NUCLEAR PORE). Nuclear Membrane,Envelope, Nuclear,Envelopes, Nuclear,Membrane, Nuclear,Membranes, Nuclear,Nuclear Envelopes,Nuclear Membranes
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine

Related Publications

D Chelsky, and C Sobotka, and C L O'Neill
September 2011, Molecular biology of the cell,
D Chelsky, and C Sobotka, and C L O'Neill
December 1990, The Journal of cell biology,
D Chelsky, and C Sobotka, and C L O'Neill
November 1988, Proceedings of the National Academy of Sciences of the United States of America,
D Chelsky, and C Sobotka, and C L O'Neill
December 1981, Biochemical and biophysical research communications,
D Chelsky, and C Sobotka, and C L O'Neill
January 2010, Nucleus (Austin, Tex.),
D Chelsky, and C Sobotka, and C L O'Neill
April 1982, The Journal of biological chemistry,
D Chelsky, and C Sobotka, and C L O'Neill
November 1992, The Journal of cell biology,
D Chelsky, and C Sobotka, and C L O'Neill
January 2014, PloS one,
D Chelsky, and C Sobotka, and C L O'Neill
July 1987, The Journal of cell biology,
D Chelsky, and C Sobotka, and C L O'Neill
October 2007, Biology of the cell,
Copied contents to your clipboard!