Pre- and post-natal ontogeny of serotonergic projections to the rat spinal cord. 1989

N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
Laboratoire de Neurobiologie du Développement, Institut National de la Santé et de la Recherche Médicale U. 249, Montpellier, France.

The development of 5-hydroxytryptamine (5-HT) innervation in the spinal cord was studied from embryonic day 14 (E14) to adulthood. Sprague-Dawley rats were fixed by perfusion with 5% glutaraldehyde in cacodylate-sodium metabisulfite buffer, and vibratome sections were processed for immunocytochemistry with a 5-HT antiserum. For electron microscopy, the sections were flat-embedded in araldite, and thin sectioning was performed. 5-HT neurons caudally directed from raphe nuclei invade the spinal cord at E14 and reach the caudalmost levels by E16-E17. In longitudinal sections, axons are seen by E15, at cervical and upper thoracic levels, to invade the presumptive gray matter from the anterior and lateral funiculi. The invasion process occurred either by sharp angulation of the axon or by branching of a collateral. By E16, at thoracic level the anterior horn and the intermediolateral columns are profusely innervated by very thin, varicose fibers; synapses are seen at E17 and E18 using EM. 5-HT immunoreactive boutons are involved here. After birth, 5-HT innervation of these two areas evolves progressively from a diffuse network to a more restricted pattern, especially at the thoracic level for the intermediolateral column and at cervical and lumbar levels for the anterior horn. The adult pattern is reached by postnatal day 21 (P21). The growth of axons toward the dorsal horn becomes noticeable by E19 at all spinal levels, when fibers invade the neck of the horn from the lateral funiculus, and innervation proceeds diffusely until P5. At P7, thin fibers course dorsally and laterally along the border of the gray matter and ramify profusely in layers I and II. The adult pattern is also reached in the dorsal horn by P21. These results are discussed in relation to the postnatal maturation of motor and sensory circuits and to the development of transplanted raphe neurons in the rat spinal cord.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
December 1992, Brain research. Developmental brain research,
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
January 1982, Progress in brain research,
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
April 1966, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
December 1981, Brain research,
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
January 1992, Somatosensory & motor research,
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
January 1966, Proceedings of the Western Pharmacology Society,
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
June 1992, Brain research. Developmental brain research,
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
May 2017, Neuroscience letters,
N Rajaofetra, and F Sandillon, and M Geffard, and A Privat
July 1981, Neuroscience letters,
Copied contents to your clipboard!