| D007249 |
Inflammation |
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. |
Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses |
|
| D009504 |
Neutrophils |
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. |
LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil |
|
| D010587 |
Phagocytosis |
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). |
Phagocytoses |
|
| D002634 |
Chemotaxis, Leukocyte |
The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. |
Leukotaxis,Leukocyte Chemotaxis |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|
| D044042 |
Receptors, Formyl Peptide |
A family of G-protein-coupled receptors that was originally identified by its ability to bind N-formyl peptides such as N-FORMYLMETHIONINE LEUCYL-PHENYLALANINE. Since N-formyl peptides are found in MITOCHONDRIA and BACTERIA, this class of receptors is believed to play a role in mediating cellular responses to cellular damage and bacterial invasion. However, non-formylated peptide ligands have also been found for this receptor class. |
Chemotactic Peptide Receptor,Chemoattractant Receptor,F-Chemotactic Peptide Receptor,FMLP Receptor,Formyl Peptide Receptor,N-Formylmethionyl Peptide Receptor,N-formyl Hexapeptide Receptor,Receptor, Chemotactic Peptide,fMet-Leu-Phe Receptor,F Chemotactic Peptide Receptor,Formyl Peptide Receptors,Hexapeptide Receptor, N-formyl,N Formylmethionyl Peptide Receptor,N formyl Hexapeptide Receptor,Peptide Receptor, Chemotactic,Peptide Receptor, N-Formylmethionyl,Peptide Receptors, Formyl,Receptor, Chemoattractant,Receptor, F-Chemotactic Peptide,Receptor, FMLP,Receptor, Formyl Peptide,Receptor, N-Formylmethionyl Peptide,Receptor, N-formyl Hexapeptide,Receptor, fMet-Leu-Phe,fMet Leu Phe Receptor |
|
| D018375 |
Neutrophil Activation |
The process in which the neutrophil is stimulated by diverse substances, resulting in degranulation and/or generation of reactive oxygen products, and culminating in the destruction of invading pathogens. The stimulatory substances, including opsonized particles, immune complexes, and chemotactic factors, bind to specific cell-surface receptors on the neutrophil. |
Activation, Neutrophil,Activations, Neutrophil,Neutrophil Activations |
|
| D020556 |
Neutrophil Infiltration |
The diffusion or accumulation of neutrophils in tissues or cells in response to a wide variety of substances released at the sites of inflammatory reactions. |
Neutrophil Recruitment,Infiltration, Neutrophil,Recruitment, Neutrophil |
|