Occurrence of 2-aminoethylphosphonic acid in feeds, ruminal bacteria and duodenal digesta from defaunated sheep. 1989

P Ankrah, and S C Loerch, and B A Dehority
Dept. of Anim. Sci., Ohio State University.

A quantitative method of analysis for 2-aminoethylphosphonic acid (AEP) was developed using reverse-phase HPLC. The detection limit for AEP was 15 nM, and the detector response (peak area) was linear from AEP levels up to 100 microM (R = .99). Mean recovery of AEP added to strained ruminal fluid from faunated sheep was 98.2%. When AEP was added to a fermentation mixture at a concentration of 22.6 micrograms/ml, 78% disappeared during a 24-h incubation. 2-Aminoethylphosphonic acid was readily detected in preparations of mixed ruminal ciliate protozoa as well as in mixed and pure strains of ruminal bacteria, feedstuffs, and ruminal fluid and duodenal digesta from defaunated sheep. The occurrence of AEP in feed and bacterial hydrolysates was confirmed by organic phosphorus analyses. The concentration of AEP in mixed ruminal protozoa was three times greater than its concentration in mixed ruminal bacteria (4,304 vs 1,383 micrograms/g DM, respectively). The AEP values for pure ruminal bacterial cultures ranged from 733 micrograms/g DM in Bacteroides succinogenes B21a to 1,166 micrograms/g DM in Butyrivibrio fibrisolvens H17c. Ruminal fluid and duodenal digesta from defaunated sheep contained AEP concentrations of 30 micrograms/ml and 90 micrograms/g DM, respectively. The concentration of AEP in feedstuffs ranged from 25 micrograms/g DM in wheat straw to 263 micrograms/g DM in oats. Because AEP occurrence is not limited to ruminal ciliate protozoa, it is of little value as a marker for protozoal presence in or passage out of the rumen.

UI MeSH Term Description Entries
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005766 Gastrointestinal Contents The contents included in all or any segment of the GASTROINTESTINAL TRACT. Digestive Tract Contents,Intestinal Contents,Stomach Contents,GI Contents,Digestive Tract Content,GI Content,Gastrointestinal Content,Intestinal Content,Stomach Content
D000615 Aminoethylphosphonic Acid An organophosphorus compound isolated from human and animal tissues. 2-Aminoethylphosphonic Acid,Ciliatine,2 Aminoethylphosphonic Acid,Acid, 2-Aminoethylphosphonic,Acid, Aminoethylphosphonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012417 Rumen The first stomach of ruminants. It lies on the left side of the body, occupying the whole of the left side of the abdomen and even stretching across the median plane of the body to the right side. It is capacious, divided into an upper and a lower sac, each of which has a blind sac at its posterior extremity. The rumen is lined by mucous membrane containing no digestive glands, but mucus-secreting glands are present in large numbers. Coarse, partially chewed food is stored and churned in the rumen until the animal finds circumstances convenient for rumination. When this occurs, little balls of food are regurgitated through the esophagus into the mouth, and are subjected to a second more thorough mastication, swallowed, and passed on into other parts of the compound stomach. (From Black's Veterinary Dictionary, 17th ed) Rumens

Related Publications

P Ankrah, and S C Loerch, and B A Dehority
December 1970, Biochemistry,
P Ankrah, and S C Loerch, and B A Dehority
January 1990, Journal of dairy science,
P Ankrah, and S C Loerch, and B A Dehority
April 2018, Microbial pathogenesis,
P Ankrah, and S C Loerch, and B A Dehority
December 1973, Nordisk veterinaermedicin,
P Ankrah, and S C Loerch, and B A Dehority
May 1971, The Proceedings of the Nutrition Society,
P Ankrah, and S C Loerch, and B A Dehority
January 1982, Reproduction, nutrition, developpement,
P Ankrah, and S C Loerch, and B A Dehority
July 1962, Biochemistry,
P Ankrah, and S C Loerch, and B A Dehority
May 1971, The Proceedings of the Nutrition Society,
Copied contents to your clipboard!