Absence of connexin43 and connexin45 does not disturb pre- and peri-implantation development. 2016

Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
Department of Anatomy and Neurobiology,National Defense Medical College,3-2 Namiki,Tokorozawa,Saitama 359-8513,Japan.

Gap junctional intercellular communication is assumed to play an important role during pre- and peri-implantation development. In this study, we eliminated connexin43 (Cx43) and connexin45 (Cx45), major gap junctional proteins in the pre- and peri-implantation embryo. We generated Cx43 -/- Cx45 -/- embryos by Cx43 +/- Cx45 +/- intercrossing, because mice deficient in Cx43 (Cx43 -/-) exhibit perinatal lethality and those deficient in Cx45 (Cx45 -/-) exhibit early embryonic lethality. Wild-type, Cx43 -/-, Cx45 -/-, and Cx43 -/- Cx45 -/- blastocysts all showed similar outgrowths in in vitro culture. Moreover, Cx43 -/- Cx45 -/- embryos were obtained at the expected Mendelian ratio up to embryonic day 9.5, when the Cx45 -/- mutation proved lethal. The Cx43 -/- Cx45 -/- embryos seemed to have no additional developmental abnormalities in comparison with the single knockout strains. Thus, pre- and peri-implantation development does not require Cx43 and Cx45. Other gap junctional proteins are expressed around these stages and these may compensate for the lack of Cx43 and Cx45.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D010064 Embryo Implantation Endometrial implantation of EMBRYO, MAMMALIAN at the BLASTOCYST stage. Blastocyst Implantation,Decidual Cell Reaction,Implantation, Blastocyst,Nidation,Ovum Implantation,Blastocyst Implantations,Decidual Cell Reactions,Embryo Implantations,Implantation, Embryo,Implantation, Ovum,Implantations, Blastocyst,Implantations, Embryo,Implantations, Ovum,Nidations,Ovum Implantations
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017630 Connexins A group of homologous proteins which form the intermembrane channels of GAP JUNCTIONS. The connexins are the products of an identified gene family which has both highly conserved and highly divergent regions. The variety contributes to the wide range of functional properties of gap junctions. Connexin,Connexin Complex Proteins,Gap Junction Proteins,Gap Junction Channel Proteins,Gap Junction Protein,Junction Protein, Gap,Junction Proteins, Gap
D046149 Embryo Culture Techniques The technique of maintaining or growing mammalian EMBRYOS in vitro. This method offers an opportunity to observe EMBRYONIC DEVELOPMENT; METABOLISM; and susceptibility to TERATOGENS. Blastocyst Culture Techniques,Blastocyst Culture Technique,Culture Technique, Blastocyst,Culture Technique, Embryo,Culture Techniques, Blastocyst,Culture Techniques, Embryo,Embryo Culture Technique
D018031 Connexin 43 A 43-kDa peptide which is a member of the connexin family of gap junction proteins. Connexin 43 is a product of a gene in the alpha class of connexin genes (the alpha-1 gene). It was first isolated from mammalian heart, but is widespread in the body including the brain. Cx43,Connexin43

Related Publications

Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
September 2020, Human reproduction (Oxford, England),
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
June 2002, Ai zheng = Aizheng = Chinese journal of cancer,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
May 2010, Proceedings of the National Academy of Sciences of the United States of America,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
January 2001, Reproduction (Cambridge, England). Supplement,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
March 2002, Cardiovascular research,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
January 1990, International review of cytology,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
June 2001, The Journal of biological chemistry,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
December 2023, Current opinion in genetics & development,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
January 2014, Beilstein journal of nanotechnology,
Kiyomasa Nishii, and Yasushi Kobayashi, and Yosaburo Shibata
May 2003, British journal of haematology,
Copied contents to your clipboard!