Basic amphipathic helical peptides induce destabilization and fusion of acidic and neutral liposomes. 1989

M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
Laboratory of Biochemistry, Faculty of Science, Fukuoka, Japan.

We have studied the fusion of small unilamellar vesicles composed of egg PC and of a mixture of egg PC plus egg PA using various basic amphipathic peptides. Fusion was monitored by carboxyfluorescein leakage assay, light scattering, membrane intermixing assay, contents mixing assay and electron microscopy. Ac-(L-Leu-L-Ala-L-Arg-L-Leu)3-NHCH3 (peptide 4(3] and Ac-(L-Leu-L-Ala-L-Lys-L-Leu)3-NHCH3 (peptide 4'3), which have high hydrophobic moments, caused transformation of small unilamellar vesicles into larger and relatively homogeneous ones. Ac-(L-Leu-L-Leu-L-Ala-L-Arg-L-Leu)2-NHCH3 (5(2], which has medium hydrophobic moment, induced weak but appreciable fusion, while Ac-(L-Ala-L-Arg-L-Leu)3-NHCH3 (3(3] which has no helical structure did not show any fusion. However, peptides 4(3), 4'3 and 5(2) caused massive leakage of the contents from small unilamellar vesicles. These results indicated that interaction of the peptides with artificial membranes caused extensive perturbation of the lipid bilayer, followed by fusion. The fusogenic capacity of model basic peptides was correlated with the hydrophobic moment of each peptide when the peptides adopted an alpha-helical structure in the presence of acidic liposomes. Peptides 4(3) and 4'3 also showed weak fusogenic ability for neutral liposomes, while 5(2) and 3(3) showed no ability, suggesting that highly amphipathic peptides, such as 4(3), interact weakly but distinctly with neutral liposomes to fuse them.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009391 Nephelometry and Turbidimetry Chemical analysis based on the phenomenon whereby light, passing through a medium with dispersed particles of a different refractive index from that of the medium, is attenuated in intensity by scattering. In turbidimetry, the intensity of light transmitted through the medium, the unscattered light, is measured. In nephelometry, the intensity of the scattered light is measured, usually, but not necessarily, at right angles to the incident light beam. Turbidimetry,Nephelometry,Turbidimetry and Nephelometry
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D011112 Polymyxin B A mixture of polymyxins B1 and B2, obtained from BACILLUS POLYMYXA strains. They are basic polypeptides of about eight amino acids and have cationic detergent action on cell membranes. Polymyxin B is used for treatment of infections with gram-negative bacteria, but may be neurotoxic and nephrotoxic. Aerosporin,Polymyxin B Sulfate
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations

Related Publications

M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
February 2024, Microorganisms,
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
March 1999, Biophysical journal,
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
November 2001, European journal of biochemistry,
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
January 2000, Biopolymers,
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
January 1991, Biochemistry,
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
January 1992, Biochimica et biophysica acta,
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
January 1997, Methods in molecular biology (Clifton, N.J.),
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
July 2003, Journal of chromatography. A,
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
January 2017, Methods in molecular biology (Clifton, N.J.),
M Suenaga, and S Lee, and N G Park, and H Aoyagi, and T Kato, and A Umeda, and K Amako
April 2024, ChemMedChem,
Copied contents to your clipboard!