Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. 1989

M Del Gallo, and M Negi, and C A Neyra
Department of Biochemistry and Microbiology, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08903.

Extracellular polysaccharides synthesized by Azospirillum brasilense and A. lipoferum were shown on agar plates and liquid flocculating cultures. The six strains used in this work expressed a mucoid phenotype, yielding positive calcofluor fluorescence under UV light. The calcofluor-binding polysaccharides were distributed between the capsular and exopolysaccharide fractions, suggesting exocellular localization. No calcofluor fluorescence was observed in residual cells after separation of the capsular and exopolysaccharide fractions. Cellulose content was significantly higher in flocculating than in nonflocculating cultures. Failure to induce flocculation by addition of cellulose (100 mg/ml) to nonflocculating cultures, together with the sensitivity of flocs to cellulase digestion, suggested that cellulose is involved in maintenance of floc stability. Different A. brasilense and A. lipoferum strains bound to a wheat lectin (fluorescein isothiocyanate-wheat germ agglutinin), indicating the occurrence of specific sugar-bearing receptors for wheat germ agglutinin on the cell surface. The biochemical specificity of the reaction was shown by hapten inhibition with N-acetyl-D-glucosamine. All six strains failed to recognize fluorescein isothiocyanate-soybean seed lectin under our experimental conditions. We conclude that azospirilla produce exocellular polysaccharides with calcofluor- and lectin-binding properties.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001557 Benzenesulfonates Organic salts and esters of benzenesulfonic acid.
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal

Related Publications

M Del Gallo, and M Negi, and C A Neyra
July 1984, Journal of bacteriology,
M Del Gallo, and M Negi, and C A Neyra
August 1985, Journal of bacteriology,
M Del Gallo, and M Negi, and C A Neyra
March 1987, Journal of bacteriology,
M Del Gallo, and M Negi, and C A Neyra
January 2002, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
M Del Gallo, and M Negi, and C A Neyra
February 1987, Applied and environmental microbiology,
M Del Gallo, and M Negi, and C A Neyra
January 1981, Annales de microbiologie,
M Del Gallo, and M Negi, and C A Neyra
November 1988, Applied and environmental microbiology,
Copied contents to your clipboard!