Posttranscriptional and Posttranslational Regulation of BK Channels. 2016

M J Shipston, and L Tian
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom. Electronic address: mike.shipston@ed.ac.uk.

Large conductance calcium- and voltage-activated potassium (BK) channels are ubiquitously expressed and play an important role in the regulation of an eclectic array of physiological processes. Their diverse functional role requires channels with a wide variety of properties even though the pore-forming α-subunit is encoded by a single gene, KCNMA1. To achieve this, BK channels exploit some of the most fundamental posttranscriptional and posttranslational mechanisms that allow proteomic diversity to be generated from a single gene. These include mechanisms that diversify mRNA variants and abundance such as alternative pre-mRNA splicing, editing, and control by miRNA. The BK channel is also subject to a diverse array of posttranslational modifications including protein phosphorylation, lipidation, glycosylation, and ubiquitination to control the number, properties, and regulation of BK channels in specific cell types. Importantly, "cross talk" between these posttranscriptional and posttranslational modifications typically converge on disordered domains of the BK channel α-subunit. This allows both wide physiological diversity to be generated and a diversity of mechanisms to allow conditional regulation of BK channels and is emerging as an important determinant of BK channel function in health and disease.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D051036 Large-Conductance Calcium-Activated Potassium Channels A major class of calcium activated potassium channels whose members are voltage-dependent. MaxiK channels are activated by either membrane depolarization or an increase in intracellular Ca(2+). They are key regulators of calcium and electrical signaling in a variety of tissues. BK Channel,Big K Channel,Large-Conductance Calcium-Activated Potassium Channel,Maxi K Channel,Maxi-K Channel,MaxiK Channel,BK Channels,Big K Channels,Maxi-K Channels,MaxiK Channels,Channel, BK,Channel, Big K,Channel, Maxi K,Channel, Maxi-K,Channel, MaxiK,K Channel, Big,K Channel, Maxi,Large Conductance Calcium Activated Potassium Channel,Large Conductance Calcium Activated Potassium Channels,Maxi K Channels
D051037 Large-Conductance Calcium-Activated Potassium Channel alpha Subunits The pore-forming subunits of large-conductance calcium-activated potassium channels. They form tetramers in CELL MEMBRANES. Large-Conductance Calcium-Activated Potassium Channels, alpha Subunit,MaxiK Channel alpha Subunit,Large Conductance Calcium Activated Potassium Channel alpha Subunits,Large Conductance Calcium Activated Potassium Channels, alpha Subunit

Related Publications

M J Shipston, and L Tian
December 2018, Anatomical record (Hoboken, N.J. : 2007),
M J Shipston, and L Tian
October 2004, Journal of biological rhythms,
M J Shipston, and L Tian
January 2015, Handbook of experimental pharmacology,
M J Shipston, and L Tian
February 2019, Annual review of physiology,
M J Shipston, and L Tian
January 2014, Frontiers in physiology,
M J Shipston, and L Tian
January 2012, Methods in molecular biology (Clifton, N.J.),
M J Shipston, and L Tian
January 2010, Current topics in membranes,
M J Shipston, and L Tian
January 2008, The Journal of general physiology,
Copied contents to your clipboard!