Glomerular tubular balance: mediation by luminal hypotonicity. 1989

D A Häberle, and U Müller, and W Nagel
Physiologisches Institut, Universität München, BRD.

Late proximal rat tubular segments were microperfused with slightly hypo- or hypertonic artificial late proximal tubular fluid (ATF) at low (11-13 nl/min) or high (30-38 nl/min) perfusion rates. Volume reabsorption, net chloride and solute reabsorption were measured as a function of length. In addition, the transepithelial resistance and voltage (Vte) were measured as a function of the applied osmotic gradient. Hypertonic solutions equilibrated to isotonicity by solute outflow rather than water influx. With hypertonic ATF the lumen positive Vte was decreased compared with free flow or with hypotonic ATF. The resistance was not significantly different between the different groups. In contrast to hypotonic ATF, hypertonic or isotonic ATF was not significantly reabsorbed. In addition, hypotonic ATF maintained its hypotonicity along the perfused segments. Its reabsorption was flow-dependent. Hypotonicity appeared to enhance solute reabsorption.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D007038 Hypotonic Solutions Solutions that have a lesser osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Solutions, Hypotonic
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D A Häberle, and U Müller, and W Nagel
February 1979, The American journal of physiology,
D A Häberle, and U Müller, and W Nagel
August 1981, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
D A Häberle, and U Müller, and W Nagel
January 1976, Nephron,
D A Häberle, and U Müller, and W Nagel
January 1975, Nephron,
D A Häberle, and U Müller, and W Nagel
January 1975, The American journal of physiology,
D A Häberle, and U Müller, and W Nagel
January 1983, Acta paediatrica Scandinavica. Supplement,
D A Häberle, and U Müller, and W Nagel
September 1965, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
D A Häberle, and U Müller, and W Nagel
January 2006, Acta physiologica (Oxford, England),
D A Häberle, and U Müller, and W Nagel
June 2000, American journal of physiology. Renal physiology,
D A Häberle, and U Müller, and W Nagel
August 1986, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!