Nerve growth factor increases in adult rat brain after hypoxic injury. 1989

H Lorez, and F Keller, and G Ruess, and U Otten
Pharmaceutical Research Department, F Hoffmann-La Roche & Co., Ltd., Basel, Switzerland.

Brain injury increases the synthesis of many growth and trophic factors. We have measured nerve growth factor (NGF) content in brain of adult rats with bilateral carotid artery occlusion exposed to 7% O2. Five days after hypoxia the NGF content was increased in neostriatum, hippocampus and cerebral neocortex, areas exhibiting focal neuronal degeneration and inflammation. The increase was not related to changes in choline acetyltransferase activity that was only reduced in heavily damaged cortex. The findings may indicate that the increase in NGF content was due to enhanced NGF synthesis by inflammatory cells including stimulated glia.

UI MeSH Term Description Entries
D008297 Male Males
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D011699 Putamen The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS. Nucleus Putamen,Nucleus Putamens,Putamen, Nucleus,Putamens,Putamens, Nucleus
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Lorez, and F Keller, and G Ruess, and U Otten
April 1979, Science (New York, N.Y.),
H Lorez, and F Keller, and G Ruess, and U Otten
June 2013, Brain sciences,
H Lorez, and F Keller, and G Ruess, and U Otten
January 1996, Annals of neurology,
H Lorez, and F Keller, and G Ruess, and U Otten
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
H Lorez, and F Keller, and G Ruess, and U Otten
January 1987, Journal of neuroscience research,
H Lorez, and F Keller, and G Ruess, and U Otten
December 1993, Brain research,
H Lorez, and F Keller, and G Ruess, and U Otten
October 1993, Experimental neurology,
H Lorez, and F Keller, and G Ruess, and U Otten
May 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
H Lorez, and F Keller, and G Ruess, and U Otten
July 1996, Brain research,
H Lorez, and F Keller, and G Ruess, and U Otten
January 1987, Science (New York, N.Y.),
Copied contents to your clipboard!