Potassium currents in dissociated cells of the rat pineal gland. 1989

A Castellano, and J López-Barneo, and C M Armstrong
Department of Physiology, University of Pennsylvania Medical School, Philadelphia 19104.

The properties of K currents of pineal cells were studied using the whole-cell variant of the patch-clamp technique. The total K current could be separated in two distinct components: a fast, transient current (It) and a slow current (Is). The activation threshold of It was at -35 to -30 mV. On depolarization to +50 mV it reaches a peak in 2-3 ms and inactivates almost completely in 50 ms. Half steady state inactivation occurs at -45 mV. Inactivation of It is voltage-dependent and is well fitted by single exponentials with time constants between 17.2 ms at +50 mV and 27.2 ms at -10 mV. Inactivation is removed with time and the recovery period shortened by membrane hyperpolarization. The slow K current has a threshold at -20 to -15 mV. It reaches a maximum in about 30-40 ms and inactivates slightly, to about 80% of the peak value at the end of pulses lasting 200 ms. With 80 mM external K, tail currents recorded after short (1-2 ms) depolarizations were about 2.5 times faster than the tails recorded at the end of 50 ms pulses. The fast tails were removed by depolarizing prepulses but the slow tails remained unaltered. Thus, the fast and slow tails are probably a reflection of the closing of the transient and slow K channels. The transient K current of pineal cells has general characteristics similar to transient currents recorded in non-secretory cells, but also has particular kinetic properties.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A Castellano, and J López-Barneo, and C M Armstrong
November 1988, The Journal of physiology,
A Castellano, and J López-Barneo, and C M Armstrong
October 1988, Neuroscience letters,
A Castellano, and J López-Barneo, and C M Armstrong
February 1992, Brain research,
A Castellano, and J López-Barneo, and C M Armstrong
November 1984, The Journal of physiology,
A Castellano, and J López-Barneo, and C M Armstrong
October 1996, The American journal of physiology,
A Castellano, and J López-Barneo, and C M Armstrong
July 1993, Journal of neurophysiology,
A Castellano, and J López-Barneo, and C M Armstrong
November 1993, The Journal of physiology,
A Castellano, and J López-Barneo, and C M Armstrong
January 2006, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
A Castellano, and J López-Barneo, and C M Armstrong
April 1998, The Journal of physiology,
A Castellano, and J López-Barneo, and C M Armstrong
October 1991, Nature,
Copied contents to your clipboard!