hPSC-derived lung and intestinal organoids as models of human fetal tissue. 2016

Megan Aurora, and Jason R Spence
Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States.

In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC).

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007234 Infant, Premature A human infant born before 37 weeks of GESTATION. Neonatal Prematurity,Premature Infants,Preterm Infants,Infant, Preterm,Infants, Premature,Infants, Preterm,Premature Infant,Prematurity, Neonatal,Preterm Infant
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D005325 Fetal Organ Maturity Functional competence of specific organs or body systems of the FETUS in utero. Fetal Maturity, Functional,Functional Fetal Maturity,Maturity, Fetal Organ,Maturity, Functional Fetal,Organ Maturity, Fetal
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D044968 Regenerative Medicine A field of medicine concerned with developing and using strategies aimed at repair or replacement of damaged, diseased, or metabolically deficient organs, tissues, and cells via TISSUE ENGINEERING; CELL TRANSPLANTATION; and ARTIFICIAL ORGANS and BIOARTIFICIAL ORGANS and tissues. Medicine, Regenerative,Medicines, Regenerative,Regenerative Medicines

Related Publications

Megan Aurora, and Jason R Spence
April 2021, Journal of molecular medicine (Berlin, Germany),
Megan Aurora, and Jason R Spence
April 2021, Journal of molecular medicine (Berlin, Germany),
Megan Aurora, and Jason R Spence
May 2020, bioRxiv : the preprint server for biology,
Megan Aurora, and Jason R Spence
January 2022, Cell transplantation,
Megan Aurora, and Jason R Spence
October 2023, Current opinion in microbiology,
Megan Aurora, and Jason R Spence
April 2025, bioRxiv : the preprint server for biology,
Megan Aurora, and Jason R Spence
April 2024, Advanced materials (Deerfield Beach, Fla.),
Megan Aurora, and Jason R Spence
October 2020, Gastroenterology,
Copied contents to your clipboard!