Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography. 1989

L Paturle, and J Wehland, and R L Margolis, and D Job
Laboratoire BRCE, INSERUM U 244, Centre d'Etudes Nucléaires, Grenoble, France.

The maximum achievable tyrosination level of neurotubulin, in vitro, is about 50%. We have developed a method to obtain a complete separation of the tyrosinatable and nontyrosinatable species. We use an immunoaffinity column, with coupled YL 1/2 monoclonal antibody (anti-Tyr-tubulin) and rapid desalting methods. Both subpopulations can be obtained in a polymerizable, apparently native, form. We find that about 35% of the brain tubulin is truly nontyrosinatable, despite the fact that it is assembly competent. Using a polyclonal antibody directed against nontyrosinatable tubulin, we find that it recognizes a specific epitope on the alpha-subunit of the dimer. The existence of an abundant tubulin subspecies, structurally different from tyrosinatable tubulin, should obviously be kept in mind in immunofluorescence studies of the distribution of nontyrosinated tubulin in brain tissues. Furthermore, we have extensively investigated the effect of tubulin tyrosination on microtubule dynamics. Despite the homogeneity of the populations under comparison, we find no significant effect of tyrosination on microtubule dynamics. Similarly, the stabilizing effects of microtubule associated proteins and of STOP protein were identical in both subpopulations. The drug taxol seems more efficient in stabilizing detyrosinated microtubules, but the difference is moderate. Taken together, these findings suggest that tubulin tyrosination does not effect microtubule stabilization, neither through modifications of the intrinsic tubulin properties nor through a differential binding of stabilizing proteins. Finally, the complete separation of two tubulin species (tyrosinated or detyrosinated) with similar kinetic properties, but immunologically different, should be of value in many kinetic studies of microtubule assembly.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D010453 Peptide Synthases Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups. Peptide Synthetases,Acid-Amino-Acid Ligases,Acid Amino Acid Ligases,Ligases, Acid-Amino-Acid,Synthases, Peptide,Synthetases, Peptide
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

L Paturle, and J Wehland, and R L Margolis, and D Job
January 2011, Methods in molecular biology (Clifton, N.J.),
L Paturle, and J Wehland, and R L Margolis, and D Job
January 1991, Methods in enzymology,
L Paturle, and J Wehland, and R L Margolis, and D Job
November 1986, The Journal of cell biology,
L Paturle, and J Wehland, and R L Margolis, and D Job
March 1998, Archives of biochemistry and biophysics,
L Paturle, and J Wehland, and R L Margolis, and D Job
January 1988, Folia biologica,
L Paturle, and J Wehland, and R L Margolis, and D Job
June 1992, Molecular and cellular biochemistry,
L Paturle, and J Wehland, and R L Margolis, and D Job
December 1987, Proceedings of the National Academy of Sciences of the United States of America,
L Paturle, and J Wehland, and R L Margolis, and D Job
June 1973, Biochemical and biophysical research communications,
L Paturle, and J Wehland, and R L Margolis, and D Job
May 1985, Biotechnology and bioengineering,
Copied contents to your clipboard!