Aberrant long-range functional connectivity density in generalized tonic-clonic seizures. 2016

Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.

Studies in generalized tonic-clonic seizures (GTCS) have reported both structural and functional alterations in the brain. However, changes in spontaneous neuronal functional organization in GTCS remain largely unknown.In this study, 70 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 70 age- and sex-matched healthy controls were recruited. Here, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on functional magnetic resonance imaging (fMRI), was applied for the first time to investigate the changes of spontaneous functional brain activity caused by epilepsy.The results showed significantly decreased long-range FCD in the middle and inferior temporal, prefrontal, and inferior parietal cortices as well as increased long-range FCD in the cerebellum anterior lobe and sensorimotor areas. Negative correlation between duration of disease and reduced long-range FCD was found. In addition, most regions with reduced long-range FCD showed decreased resting-state functional connectivity (rsFC) within default mode network.Negative correlation between duration of disease and long-range FCD may reflect an adverse consequence eventually from original. Furthermore, the observed FCD and rsFC alterations have been speculated to be associated with the social-cognitive impairments as well as motor control. Our study provided novel evidences to look into neuro-pathophysiological mechanisms underlying GTCS.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D012146 Rest Freedom from activity. Rests
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004829 Epilepsy, Generalized Recurrent conditions characterized by epileptic seizures which arise diffusely and simultaneously from both hemispheres of the brain. Classification is generally based upon motor manifestations of the seizure (e.g., convulsive, nonconvulsive, akinetic, atonic, etc.) or etiology (e.g., idiopathic, cryptogenic, and symptomatic). (From Mayo Clin Proc, 1996 Apr;71(4):405-14) Convulsive Generalized Seizure Disorder,Epilepsy, Tonic,Generalized Nonconvulsive Seizure Disorder,Seizure Disorder, Generalized,Convulsive Seizure Disorder, Generalized,Epilepsy, Akinetic,Epilepsy, Atonic,Generalized Convulsive Epilepsy,Generalized Nonconvulsive Epilepsy,Generalized Onset Seizure Disorder,Generalized Seizure Disorder, Convulsive,Generalized Seizure Disorder, Nonconvulsive,Nonconvulsive Generalized Seizure Disorder,Nonconvulsive Seizure Disorder, Generalized,Seizure Disorder, Convulsive, Generalized,Seizure Disorder, Generalized Nonconvulsive,Seizure Disorder, Generalized Onset,Seizure Disorder, Generalized, Convulsive,Seizure Disorder, Nonconvulsive Generalized,Symptomatic Generalized Epilepsy,Akinetic Epilepsies,Akinetic Epilepsy,Atonic Epilepsies,Atonic Epilepsy,Convulsive Epilepsies, Generalized,Convulsive Epilepsy, Generalized,Epilepsies, Akinetic,Epilepsies, Atonic,Epilepsies, Generalized,Epilepsies, Generalized Convulsive,Epilepsies, Tonic,Epilepsy, Generalized Convulsive,Epilepsy, Generalized Nonconvulsive,Epilepsy, Symptomatic Generalized,Generalized Convulsive Epilepsies,Generalized Epilepsies,Generalized Epilepsy,Generalized Epilepsy, Symptomatic,Generalized Seizure Disorder,Generalized Seizure Disorders,Nonconvulsive Epilepsy, Generalized,Seizure Disorders, Generalized,Tonic Epilepsies,Tonic Epilepsy
D005260 Female Females
D005500 Follow-Up Studies Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease. Followup Studies,Follow Up Studies,Follow-Up Study,Followup Study,Studies, Follow-Up,Studies, Followup,Study, Follow-Up,Study, Followup

Related Publications

Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
June 2014, Radiology,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
June 2022, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
July 2019, Neuroreport,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
January 2020, Human brain mapping,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
July 2010, Epilepsy currents,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
April 1989, Pediatric clinics of North America,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
May 1998, Journal of child neurology,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
February 2017, Human brain mapping,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
September 2022, Epilepsia open,
Ling Zhu, and Yibo Li, and Yifeng Wang, and Rong Li, and Zhiqiang Zhang, and Guangming Lu, and Huafu Chen
August 2020, Epilepsia,
Copied contents to your clipboard!