Detection of Duchenne/Becker muscular dystrophy carriers by densitometric scanning. 1989

T W Prior, and K J Friedman, and L M Silverman
Div. of Lab. Med., North Carolina Memorial Hospital, Chapel Hill, NC 27514.

UI MeSH Term Description Entries
D009136 Muscular Dystrophies A heterogeneous group of inherited MYOPATHIES, characterized by wasting and weakness of the SKELETAL MUSCLE. They are categorized by the sites of MUSCLE WEAKNESS; AGE OF ONSET; and INHERITANCE PATTERNS. Muscular Dystrophy,Myodystrophica,Myodystrophy,Dystrophies, Muscular,Dystrophy, Muscular,Myodystrophicas,Myodystrophies
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003720 Densitometry The measurement of the density of a material by measuring the amount of light or radiation passing through (or absorbed by) the material. Densitometries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006580 Genetic Carrier Screening Identification of individuals who are heterozygous at a GENETIC LOCUS for a recessive PHENOTYPE. Carriers, Genetic, Detection,Genetic Carriers, Detection,Heterozygote Detection,Carrier Detection, Genetic,Detection, Genetic Carrier,Genetic Carrier Detection,Heterozygote Screening,Carrier Screening, Genetic,Detection, Heterozygote,Screening, Genetic Carrier,Screening, Heterozygote,Screenings, Genetic Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015247 Deoxyribonuclease HindIII One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence A/AGCTT at the slash. HindIII is from Haemophilus influenzae R(d). Numerous isoschizomers have been identified. EC 3.1.21.-. DNA Restriction Enzyme HindIII,Deoxyribonuclease BstFI,Deoxyribonuclease EcoVIII,Endonuclease HindIII,B Pertussis Restriction Enzyme I,BpeI Endonuclease,Endodeoxyribonuclease BpeI,Endonuclease Asp52I,Endonuclease BbrI,Endonuclease BpeI,Endonuclease BstFI,Endonuclease Cfr32I,Endonuclease ChuI,Endonuclease Eco65I,Endonuclease Eco98I,Endonuclease EcoVIII,Endonuclease Hin1076III,Endonuclease Hin173I,Endonuclease HinJCII,Endonuclease HinbIII,Endonuclease HinfII,Endonuclease HsuI,Endonuclease LlaCI,Endonuclease MkiI,LlaCI, Endonuclease
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal

Related Publications

T W Prior, and K J Friedman, and L M Silverman
October 1999, European journal of pediatrics,
T W Prior, and K J Friedman, and L M Silverman
July 1999, Neuromuscular disorders : NMD,
T W Prior, and K J Friedman, and L M Silverman
December 2005, Neurology,
T W Prior, and K J Friedman, and L M Silverman
December 2015, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie,
T W Prior, and K J Friedman, and L M Silverman
December 2007, Orvosi hetilap,
T W Prior, and K J Friedman, and L M Silverman
January 2011, Acta medica Iranica,
T W Prior, and K J Friedman, and L M Silverman
January 2004, Methods in molecular medicine,
T W Prior, and K J Friedman, and L M Silverman
June 2017, Muscle & nerve,
T W Prior, and K J Friedman, and L M Silverman
June 2017, Muscle & nerve,
Copied contents to your clipboard!