Edwin. 2017

Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
1 Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.

Characterization of gene expression is a central tenet of the synthetic biology design cycle. Sometimes it requires high-throughput approaches that allow quantification of the gene expression of different elements in diverse conditions. Recently, several large-scale studies have highlighted the importance of posttranscriptional regulation mechanisms and their impact on correlations between mRNA and protein abundance. Here, we introduce Edwin, a robotic workstation that enables the automated propagation of microbial cells and the dynamic characterization of gene expression. We developed an automated procedure that integrates customized RNA extraction and analysis into the typical high-throughput characterization of reporter gene expression. To test the system, we engineered Escherichia coli strains carrying different promoter/ gfp fusions. We validated Edwin's abilities: (1) preparation of custom cultures of microbial cells and (2) dynamic quantification of fluorescence signal and bacterial growth and simultaneous RNA extraction and analysis at different time points. We confirmed that RNA obtained during this automated process was suitable for use in qPCR analysis. Our results established that Edwin is a powerful platform for the automated analysis of microbial gene expression at the protein and RNA level. This platform could be used in a high-throughput manner to characterize not only natural regulatory elements but also synthetic ones.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012371 Robotics The application of electronic, computerized control systems to mechanical devices designed to perform human functions. Formerly restricted to industry, but nowadays applied to artificial organs controlled by bionic (bioelectronic) devices, like automated insulin pumps and other prostheses. Companion Robots,Humanoid Robots,Remote Operations (Robotics),Social Robots,Socially Assistive Robots,Telerobotics,Soft Robotics,Assistive Robot, Socially,Companion Robot,Humanoid Robot,Operation, Remote (Robotics),Operations, Remote (Robotics),Remote Operation (Robotics),Robot, Companion,Robot, Humanoid,Robot, Social,Robot, Socially Assistive,Robotic, Soft,Social Robot,Socially Assistive Robot,Soft Robotic
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent
D057166 High-Throughput Screening Assays Rapid methods of measuring the effects of an agent in a biological or chemical assay. The assay usually involves some form of automation or a way to conduct multiple assays at the same time using sample arrays. High-Throughput Screening,High-Throughput Biological Assays,High-Throughput Chemical Assays,High-Throughput Screening Methods,Assay, High-Throughput Biological,Assay, High-Throughput Chemical,Assay, High-Throughput Screening,Biological Assay, High-Throughput,Chemical Assay, High-Throughput,High Throughput Biological Assays,High Throughput Chemical Assays,High Throughput Screening,High Throughput Screening Assays,High Throughput Screening Methods,High-Throughput Biological Assay,High-Throughput Chemical Assay,High-Throughput Screening Assay,High-Throughput Screening Method,High-Throughput Screenings,Screening Assay, High-Throughput,Screening Method, High-Throughput,Screening, High-Throughput
D057205 Automation, Laboratory Controlled operations of analytic or diagnostic processes, or systems by mechanical or electronic devices. Laboratory Automation
D017930 Genes, Reporter Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest. Reporter Genes,Gene, Reporter,Reporter Gene
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
January 1967, Revue francaise d'allergologie,
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
April 1952, British medical journal,
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
March 1940, Science (New York, N.Y.),
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
July 1969, Vox sanguinis,
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
June 1952, Edinburgh medical journal,
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
December 1951, Experientia,
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
January 1952, Cincinnati journal of medicine,
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
September 1968, The New Zealand medical journal,
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
May 1911, Science (New York, N.Y.),
Aitor de Las Heras, and Weike Xiao, and Vlastimil Sren, and Alistair Elfick
January 1951, Transactions - American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology,
Copied contents to your clipboard!