Lung edema increases transvascular filtration rate but not filtration coefficient. 1989

J C Parker, and M I Townsley, and J T Cartledge
Department of Physiology, College of Medicine, University of South Alabama, Mobile 36688.

To determine whether the accelerated rate of lobe weight gain during severe pulmonary edema is attributed to increased permeability of the microvascular barrier or a loss of tissue forces opposing filtration, the effect of edema on capillary filtration coefficient (Kf,C), interstitial compliance (Ci), and the volume of fluid filtered after a step increase in microvascular pressure (delta Vi) were determined in eight isolated left lower lobes of dog lungs perfused at 37 degrees C with autologous blood. After attaining a base-line isogravimetric state, the capillary pressure (Pc) was increased in successive steps of 2, 5, and 10 cmH2O. This sequence of vascular pressure increases was repeated three times. Edema accumulation was expressed as weight gained as a percent of initial lobe weight (% delta Wt), and Kf,C was measured by time 0 extrapolation of the weight gain curve. An exponential rate constant for the decrease in the rate of weight gain with time (K) was calculated for each curve. Ci was then calculated by assuming that the capillary wall and interstitium constitute a resistance-capacitance network. Kf,C was not increased by edema formation in any group. Between mild (% delta Wt less than 30%) and severe edema states (% delta Wt greater than 50%) respective mean Ci increased significantly from 3.54 to 9.12 ml.cmH2O-1.100 g-1, K decreased from 0.089 to 0.036 min-1, and delta Vi increased from 1.28 to 2.4 ml.cmH2O-1.100 g-1. The delta Vi during each Pc increase was highly correlated with Kf,C and Ci when used together as independent variables (r = 0.99) but less well correlated when used separately.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D008297 Male Males
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011654 Pulmonary Edema Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening. Wet Lung,Edema, Pulmonary,Edemas, Pulmonary,Pulmonary Edemas,Lung, Wet,Lungs, Wet,Wet Lungs
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014655 Vascular Resistance The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT. Peripheral Resistance,Total Peripheral Resistance,Pulmonary Vascular Resistance,Systemic Vascular Resistance,Peripheral Resistance, Total,Resistance, Peripheral,Resistance, Pulmonary Vascular,Resistance, Systemic Vascular,Resistance, Total Peripheral,Resistance, Vascular,Vascular Resistance, Pulmonary,Vascular Resistance, Systemic

Related Publications

J C Parker, and M I Townsley, and J T Cartledge
January 1979, The Japanese journal of physiology,
J C Parker, and M I Townsley, and J T Cartledge
November 1986, Journal of applied physiology (Bethesda, Md. : 1985),
J C Parker, and M I Townsley, and J T Cartledge
March 1990, Journal of applied physiology (Bethesda, Md. : 1985),
J C Parker, and M I Townsley, and J T Cartledge
January 1978, Critical care medicine,
J C Parker, and M I Townsley, and J T Cartledge
March 1979, Surgery,
J C Parker, and M I Townsley, and J T Cartledge
August 1978, Chest,
J C Parker, and M I Townsley, and J T Cartledge
July 2007, American journal of physiology. Lung cellular and molecular physiology,
J C Parker, and M I Townsley, and J T Cartledge
January 1983, Bulletin europeen de physiopathologie respiratoire,
J C Parker, and M I Townsley, and J T Cartledge
March 1988, Chest,
Copied contents to your clipboard!