Expression of human adenosine deaminase after fusion of adenosine deaminase-deficient cells with mouse fibroblasts. 1978

M J Siciliano, and M R Bordelon, and P O Kohler

Two human choriocarcinoma cell lines were shown to be deficient in adenosine deaminase (ADA; adenosine aminohydrolase, EC 3.5.4.4) such that they did not produce bands on starch gels after electrophoresis and histochemical staining. Radiometric assay indicated that their ADA specific activity was approximately 2% that of HeLa (human) cell controls. Subclone analysis of one of the lines indicated that this deficiency was representative of individual cells of the line. After fusion of these cells with mouse fibroblasts having high ADA activity, most independently isolated hybrid clones expressed one of two, or both, additional (to the mouse) bands of ADA activity after electrophoresis. The expression of these extra bands in hybrids was dependent upon actual fusion. The phenomenon was observed in 30 of 45 independently derived hybrid clones from four different fusion experiments involving two different parental lines from each species. The pattern of appearance of the extra bands in independent hybrid clones and the tendency of a hybrid clone to lose one of the extra bands through subsequent passages suggests that the bands were the products of human genetic material. The extra bands electrophoretically comigrated with human ADA 1 and 2 from human ADA-1-2 heterozygotes and the faster-migrating of the two extra bands comigrated with human ADA 1 from HeLa cells. Therefore, we suggest that the bands appearing in hybrids are the products of the 1 and 2 alleles of the human ADA locus. The human cells used for fusion were deficient in ADA activity but contained the genetic information for ADA 1 and 2. Fusion with mouse cells having ADA activity resulted in the activation of both human gene products coded for on separate homologous chromosomes. We conclude that the human ADA locus is under manipulatable genetic regulation.

UI MeSH Term Description Entries
D009700 Nucleoside Deaminases Catalyze the hydrolysis of nucleosides with the elimination of ammonia. Deaminases, Nucleoside
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M J Siciliano, and M R Bordelon, and P O Kohler
February 1987, Proceedings of the National Academy of Sciences of the United States of America,
M J Siciliano, and M R Bordelon, and P O Kohler
November 1984, Gene,
M J Siciliano, and M R Bordelon, and P O Kohler
September 1984, Molecular and cellular biology,
M J Siciliano, and M R Bordelon, and P O Kohler
December 1988, Molecular and cellular biology,
M J Siciliano, and M R Bordelon, and P O Kohler
November 1988, The Journal of biological chemistry,
M J Siciliano, and M R Bordelon, and P O Kohler
January 1980, Advances in experimental medicine and biology,
M J Siciliano, and M R Bordelon, and P O Kohler
May 1989, The Journal of biological chemistry,
M J Siciliano, and M R Bordelon, and P O Kohler
May 1984, Biochimica et biophysica acta,
M J Siciliano, and M R Bordelon, and P O Kohler
August 1984, The Journal of biological chemistry,
M J Siciliano, and M R Bordelon, and P O Kohler
July 2021, Journal of clinical immunology,
Copied contents to your clipboard!