Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. 2016

Irina Ushach, and Albert Zlotnik
Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA.

M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016173 Macrophage Colony-Stimulating Factor A mononuclear phagocyte colony-stimulating factor (M-CSF) synthesized by mesenchymal cells. The compound stimulates the survival, proliferation, and differentiation of hematopoietic cells of the monocyte-macrophage series. M-CSF is a disulfide-bonded glycoprotein dimer with a MW of 70 kDa. It binds to a specific high affinity receptor (RECEPTOR, MACROPHAGE COLONY-STIMULATING FACTOR). CSF-1,CSF-M,Colony-Stimulating Factor 1,Colony-Stimulating Factor, Macrophage,M-CSF,Colony Stimulating Factor 1,Colony Stimulating Factor, Macrophage
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D019070 Cell Lineage The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo. Cell Lineages,Lineage, Cell,Lineages, Cell
D022423 Myeloid Cells The classes of BONE MARROW-derived blood cells in the monocytic series (MONOCYTES and their precursors) and granulocytic series (GRANULOCYTES and their precursors). Cell, Myeloid,Cells, Myeloid,Myeloid Cell

Related Publications

Irina Ushach, and Albert Zlotnik
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
Irina Ushach, and Albert Zlotnik
November 1999, Nihon rinsho. Japanese journal of clinical medicine,
Irina Ushach, and Albert Zlotnik
January 2001, European journal of histochemistry : EJH,
Irina Ushach, and Albert Zlotnik
January 1990, Progress in clinical and biological research,
Irina Ushach, and Albert Zlotnik
January 1998, Pediatric hematology and oncology,
Irina Ushach, and Albert Zlotnik
May 1990, Annals of internal medicine,
Irina Ushach, and Albert Zlotnik
January 1994, Stem cells (Dayton, Ohio),
Copied contents to your clipboard!