Neoplasms of the central nervous system in Norway. III. Epidemiological characteristics of intracranial gliomas according to histology. 1989

A Helseth, and S J Mørk
Norwegian Cancer Registry, Institute for Epidemiological Cancer Research, Montebello, Oslo.

Data were analysed from 4859 patients with different histological types of intracranial glioma registered by the Norwegian Cancer Registry between 1955 and 1984. Glioblastoma comprised 57.9% of all cases. The second most common primary brain tumour was astrocytoma (19.0%), then mixed glioma (9.2%), oligodendroglioma (7.9%), medulloblastoma (3.1%) and ependymoma (2.9%). A primary brain tumour in a child is approximately twice as likely to be an astrocytoma as a medulloblastoma. The age-specific incidence for glioblastoma increases with age, whereas the incidence of astrocytoma and oligodendroglioma peaks at middle age. Both glioblastoma and astrocytoma showed increased incidence rates over the study period and this was most pronounced in the age-group above 60 years. The prognosis for gliomas varied with age at time of diagnosis, generally being better the younger the patient. For oligodendroglioma patients, survival prospects were independent of age at time of diagnosis. The best prognosis was seen in patients up to 30 years with astrocytoma. Applied in epidemiology, the data indicate that astrocytoma, oligodendroglioma, mixed glioma and ependymoma may be treated as a group which should be separated from both glioblastoma and medulloblastoma.

UI MeSH Term Description Entries
D008527 Medulloblastoma A malignant neoplasm that may be classified either as a glioma or as a primitive neuroectodermal tumor of childhood (see NEUROECTODERMAL TUMOR, PRIMITIVE). The tumor occurs most frequently in the first decade of life with the most typical location being the cerebellar vermis. Histologic features include a high degree of cellularity, frequent mitotic figures, and a tendency for the cells to organize into sheets or form rosettes. Medulloblastoma have a high propensity to spread throughout the craniospinal intradural axis. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2060-1) Arachnoidal Cerebellar Sarcoma, Circumscribed,Medulloblastoma, Desmoplastic,Medullomyoblastoma,Sarcoma, Cerebellar, Circumscribed Arachnoidal,Medulloblastoma, Adult,Medulloblastoma, Childhood,Melanocytic Medulloblastoma,Adult Medulloblastoma,Adult Medulloblastomas,Childhood Medulloblastoma,Childhood Medulloblastomas,Desmoplastic Medulloblastoma,Desmoplastic Medulloblastomas,Medulloblastoma, Melanocytic,Medulloblastomas,Medulloblastomas, Adult,Medulloblastomas, Childhood,Medulloblastomas, Desmoplastic,Medulloblastomas, Melanocytic,Medullomyoblastomas,Melanocytic Medulloblastomas
D009664 Norway A country located in northern Europe, bordering the North Sea and the Atlantic Ocean, west of Sweden. The capital is Oslo. Kingdom of Norway
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D004806 Ependymoma Glioma derived from EPENDYMOGLIAL CELLS that tend to present as malignant intracranial tumors in children and as benign intraspinal neoplasms in adults. It may arise from any level of the ventricular system or central canal of the spinal cord. Intracranial ependymomas most frequently originate in the FOURTH VENTRICLE and histologically are densely cellular tumors which may contain ependymal tubules and perivascular pseudorosettes. Spinal ependymomas are usually benign papillary or myxopapillary tumors. (From DeVita et al., Principles and Practice of Oncology, 5th ed, p2018; Escourolle et al., Manual of Basic Neuropathology, 2nd ed, pp28-9) Ependymoma, Myxopapillary,Ependymoma, Papillary,Anaplastic Ependymoma,Cellular Ependymoma,Clear Cell Ependymoma,Papillary Ependymoma,Anaplastic Ependymomas,Ependymoma, Anaplastic,Ependymomas,Ependymomas, Anaplastic,Ependymomas, Myxopapillary,Ependymomas, Papillary,Myxopapillary Ependymoma,Myxopapillary Ependymomas,Papillary Ependymomas
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D001254 Astrocytoma Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082) Astrocytoma, Subependymal Giant Cell,Glioma, Astrocytic,Oligoastrocytoma, Mixed,Pleomorphic Xanthoastrocytomas,Anaplastic Astrocytoma,Astrocytoma, Grade I,Astrocytoma, Grade II,Astrocytoma, Grade III,Astrocytoma, Protoplasmic,Astroglioma,Cerebral Astrocytoma,Childhood Cerebral Astrocytoma,Fibrillary Astrocytoma,Gemistocytic Astrocytoma,Intracranial Astrocytoma,Juvenile Pilocytic Astrocytoma,Pilocytic Astrocytoma,Subependymal Giant Cell Astrocytoma,Anaplastic Astrocytomas,Astrocytic Glioma,Astrocytic Gliomas,Astrocytoma, Anaplastic,Astrocytoma, Cerebral,Astrocytoma, Childhood Cerebral,Astrocytoma, Fibrillary,Astrocytoma, Gemistocytic,Astrocytoma, Intracranial,Astrocytoma, Juvenile Pilocytic,Astrocytoma, Pilocytic,Astrocytomas,Astrocytomas, Grade III,Astrogliomas,Cerebral Astrocytoma, Childhood,Cerebral Astrocytomas,Childhood Cerebral Astrocytomas,Fibrillary Astrocytomas,Gemistocytic Astrocytomas,Gliomas, Astrocytic,Grade I Astrocytoma,Grade I Astrocytomas,Grade II Astrocytoma,Grade II Astrocytomas,Grade III Astrocytoma,Grade III Astrocytomas,Intracranial Astrocytomas,Juvenile Pilocytic Astrocytomas,Mixed Oligoastrocytoma,Mixed Oligoastrocytomas,Pilocytic Astrocytoma, Juvenile,Pilocytic Astrocytomas,Pleomorphic Xanthoastrocytoma,Protoplasmic Astrocytoma,Protoplasmic Astrocytomas,Xanthoastrocytoma, Pleomorphic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

A Helseth, and S J Mørk
October 1973, The Journal of the Oklahoma State Medical Association,
A Helseth, and S J Mørk
May 2017, Critical reviews in oncology/hematology,
A Helseth, and S J Mørk
January 2011, Toxicologic pathology,
A Helseth, and S J Mørk
February 1977, The Practitioner,
A Helseth, and S J Mørk
January 1959, Arkhiv patologii,
A Helseth, and S J Mørk
January 1984, Gerontology & geriatrics education,
A Helseth, and S J Mørk
January 1987, Clinical and experimental neurology,
A Helseth, and S J Mørk
February 2022, Laboratory investigation; a journal of technical methods and pathology,
Copied contents to your clipboard!