Cell kinetics in leukaemia and solid tumours studied with in vivo bromodeoxyuridine and flow cytometry. 1989

A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
Dipartimento di Medicina Interna e Terapia Medica, Policlinico San Matteo, Italy.

During a 15-month period, we used in vivo bromodeoxyuridine (BUDR) infusion to study cell kinetics in 112 consecutive patients with various types of malignant tumours: acute leukaemia (50 patients), gastric cancer (42) and brain gliomas (20). The in vivo BUDR method requires that a single tumour sample be taken 4-6 h after infusion and that bivariate flow cytometry (FCM) be employed to measure simultaneously the percentage of BUDR-labelled cells (which are identified with a green fluorescent anti-BUDR monoclonal antibody) and their mean DNA content (following propidium iodide staining). This technique rapidly furnishes the labelling index (LI) and the DNA synthesis time (TS), from which the tumour potential doubling time (Tpot) and production rate (fractional turnover rate, FTR) are calculated. The procedure took 6-9 h to complete and there was no immediate toxicity from BUDR administration. Successful LI and TS determinations were obtained in 89 (80%) and 80 (72%) of the 112 patients, respectively. Correlations were sought between kinetic parameters and a number of pathological and clinical ones. In 34 patients with acute non-lymphoblastic leukaemias who were uniformly treated for remission (CR) induction and maintenance, proliferative activity, as measured by Tpot and FTR, was greater in responsive than in non-responsive patients, and in those who experienced CR for over 8 months than in those who had a shorter CR. Proliferative activity was also greater in patients with advanced gastric cancers than in those with more limited disease. No correlations between kinetic and clinical and pathological parameters were found in gliomas. These data indicate the in vivo BUDR infusion coupled with FCM measurements can be performed in clinical settings to obtain kinetic data rapidly in quite large patient series. This will probably allow the inclusion of kinetic data in clinical trials aimed at evaluating the prognostic relevance of these data.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
October 1988, British journal of cancer,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
January 1990, Cytometry,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
November 1995, Leukemia,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
June 1994, The Journal of urology,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
July 1989, Nihon Geka Gakkai zasshi,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
March 1989, Cytometry,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
September 1993, Cell proliferation,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
October 1997, Cytometry,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
March 1987, Cell and tissue kinetics,
A Riccardi, and M Danova, and P Dionigi, and P Gaetani, and T Cebrelli, and G Butti, and G Mazzini, and G Wilson
May 1984, European journal of cell biology,
Copied contents to your clipboard!