Physiologically Based Pharmacokinetic Modeling of Palbociclib. 2017

Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
Clinical Pharmacology, Global Product Development, Pfizer, La Jolla, CA, USA.

Palbociclib is an orally available CDK4/6 inhibitor. In humans, palbociclib undergoes metabolism mediated primarily by CYP3A and SULT2A1, and it is also a weak time-dependent CYP3A inhibitor. The objectives of the current study are to (1) develop a physiologically based pharmacokinetic (PBPK) model of palbociclib based on the in silico, in vitro, and in vivo pharmacokinetic data of palbociclib, (2) verify the PBPK model with clinical drug-drug interaction (DDI) results of palbociclib with strong CYP3A inhibitor (itraconazole), inducer (rifampin), and a sensitive CYP3A substrate (midazolam), and (3) predict the DDI risk of palbociclib with moderate/weak CYP3A inhibitors. The developed PBPK model adequately described the observed pharmacokinetics of palbociclib after administration of a single oral or intravenous dose of palbociclib. The model-predicted DDIs of palbociclib with itraconazole, rifampin, and midazolam were consistent with the observed DDIs, with the discrepancies of the predicted vs observed AUCR and Cmax R within 20%, except for the AUC ratio of palbociclib with coadministration of rifampin. Using this final PBPK model, it was predicted that weak CYP3A inhibitors (fluoxetine and fluvoxamine) are anticipated to have negligible DDI risk with palbociclib, whereas moderate CYP3A inhibitors (diltiazem and verapamil) may increase plasma palbociclib AUC by ∼40%. A moderate CYP3A inducer (efavirenz) may decrease plasma palbociclib AUC by ∼40%. The established model is considered sufficiently robust for other applications in support of the continued development for palbociclib.

UI MeSH Term Description Entries
D008874 Midazolam A short-acting hypnotic-sedative drug with anxiolytic and amnestic properties. It is used in dentistry, cardiac surgery, endoscopic procedures, as preanesthetic medication, and as an adjunct to local anesthesia. The short duration and cardiorespiratory stability makes it useful in poor-risk, elderly, and cardiac patients. It is water-soluble at pH less than 4 and lipid-soluble at physiological pH. Dormicum,Midazolam Hydrochloride,Midazolam Maleate,Ro 21-3981,Versed,Hydrochloride, Midazolam,Maleate, Midazolam,Ro 21 3981,Ro 213981
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations

Related Publications

Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
January 2012, Methods in molecular biology (Clifton, N.J.),
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
January 2019, Journal of pharmaceutical sciences,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
November 2010, ACS nano,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
September 2017, Journal of pharmaceutical sciences,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
August 2023, Biology,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
October 1983, Journal of pharmaceutical sciences,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
January 2015, EXCLI journal,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
July 2012, Clinical pharmacology and therapeutics,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
December 2010, Journal of nanoscience and nanotechnology,
Yanke Yu, and Cho-Ming Loi, and Justin Hoffman, and Diane Wang
January 1994, Toxicology and industrial health,
Copied contents to your clipboard!