Distribution and induction of cytochrome P-450 and two cytochrome P-450-dependent monooxygenase activities in rat liver parenchymal cell subpopulations separated by centrifugal elutriation. 1989

B Seibert, and F Oesch, and P Steinberg
Institute of Toxicology, University of Mainz, Federal Republic of Germany.

Liver parenchymal cells from the periportal and centrilobular zones differ in their morphological, biochemical and functional characteristics. In an effort to obtain fractions enriched in either periportal or centrilobular cells, isolated rat liver parenchymal cells were separated into five subpopulations by centrifugal elutriation. The mean diameters of the cells present in fractions I-V were 19.6, 21.1, 21.8, 22.7 and 23.5 micron, respectively. The content of cytochrome P-450 as well as benzphetamine N-demethylase and 7-ethoxyresorufin O-deethylase activities were higher in the larger parenchymal cells than in the smaller ones. After administration of phenobarbital the content of cytochrome P-450 was approximately two-fold greater in the cells present in fractions 3-5, when compared to the same subpopulations isolated from untreated rats; the activity of benzphetamine N-demethylase was enhanced to a similar extent in all five fractions. 3-Methylcholanthrene treatment resulted in a significant increase of cytochrome P-450 content and 7-ethoxyresorufin O-deethylase activity in all five fractions: both parameters were slightly higher in fractions 4 and 5 than in fractions 1 and 2. In conclusion, the elutriated liver parenchymal cells seem to preserve the biochemical heterogeneity observed in the intact liver; the potential enrichment of periportal and centrilobular cells in the different fractions by centrifugal elutriation is discussed.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme

Related Publications

B Seibert, and F Oesch, and P Steinberg
September 1981, European journal of biochemistry,
B Seibert, and F Oesch, and P Steinberg
July 1981, British journal of cancer,
B Seibert, and F Oesch, and P Steinberg
May 1993, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
B Seibert, and F Oesch, and P Steinberg
August 1987, Biochemical pharmacology,
B Seibert, and F Oesch, and P Steinberg
June 1986, Applied biochemistry and biotechnology,
B Seibert, and F Oesch, and P Steinberg
December 1982, Japanese journal of pharmacology,
B Seibert, and F Oesch, and P Steinberg
January 1992, Polish journal of pharmacology and pharmacy,
B Seibert, and F Oesch, and P Steinberg
April 1990, The American journal of physiology,
B Seibert, and F Oesch, and P Steinberg
October 1981, The Journal of cell biology,
B Seibert, and F Oesch, and P Steinberg
January 1996, The American journal of Chinese medicine,
Copied contents to your clipboard!