The growth inhibitor of African green monkey (BSC-1) cells is transforming growth factors beta 1 and beta 2. 1989

J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
Celtrix Laboratories, Collagen Corporation, Palo Alto, California 94303.

The growth inhibitory activity in conditioned medium of African green monkey kidney epithelial (BSC-1) cells that has been shown to arise, at least in part, from transforming growth factor beta 2 (TGF-beta 2) [Hanks, S. K., Armour, R., Baldwin, J. H., Maldonado, F., Spiess, J., & Holley, R. W. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 79-82] was tested for growth inhibitory activity prior to and following acidification. Similar to TGF-beta 1 from human platelets, the inhibitory activity from BSC-1 cells demonstrated an 8-10-fold stimulation following acidification, showing that the activity was secreted from the cells in latent form. Conditioned medium from BSC-1 cells was collected, acidified, and fractionated by procedures that separate TGF-beta 1 and -2. Biological activity was assayed by using the BSC-1 cell proliferation assay. Two active proteins with properties similar to known TGF-beta 1 and TGF-beta 2 were identified. Identity was confirmed by using immunological and amino acid sequencing techniques. These results were consistent with Northern blot analysis of total BSC-1 RNA, using cDNA probes for TGF-beta 1 and TGF-beta 2, which demonstrated strong signals for both mRNAs. Metabolic labeling in conjunction with two-dimensional gel electrophoresis revealed that the cells secrete approximately 10% TGF-beta 1 and 90% TGF-beta 2.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015291 Transforming Growth Factors Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, TRANSFORMING GROWTH FACTOR ALPHA and TRANSFORMING GROWTH FACTOR BETA. Transforming Growth Factor,Factor, Transforming Growth,Factors, Transforming Growth,Growth Factor, Transforming,Growth Factors, Transforming
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal

Related Publications

J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
August 1986, Proceedings of the National Academy of Sciences of the United States of America,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
November 1984, Science (New York, N.Y.),
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
January 1987, Methods in enzymology,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
September 1983, Proceedings of the National Academy of Sciences of the United States of America,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
March 1972, International journal of cancer,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
September 1978, Plasmid,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
February 1971, Biochimica et biophysica acta,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
December 1989, The Journal of cell biology,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
February 1991, Journal of neuroscience research,
J M McPherson, and S J Sawamura, and Y Ogawa, and K Dineley, and P Carrillo, and K A Piez
January 1991, The American journal of pathology,
Copied contents to your clipboard!