Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability. 2016

Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.

Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000069453 Ultrasonic Waves Oscillating sound wave with a frequency higher than the upper limit of the human hearing range. LIPUS,Low Intensity Pulsed Ultrasound,Low Intensity Pulsed Ultrasound Radiation,Low-Intensity Pulsed Ultrasound (LIPUS),Pulsed Ultrasound,Ultrasonic Vibration,Ultrasound Radiation,Ultrasound Waves,Low Intensity Pulsed Ultrasound (LIPUS),Low-Intensity Pulsed Ultrasounds (LIPUS),Pulsed Ultrasound, Low-Intensity (LIPUS),Pulsed Ultrasounds,Pulsed Ultrasounds, Low-Intensity (LIPUS),Radiation, Ultrasound,Ultrasonic Vibrations,Ultrasonic Wave,Ultrasound Wave,Ultrasound, Low-Intensity Pulsed (LIPUS),Ultrasound, Pulsed,Ultrasounds, Low-Intensity Pulsed (LIPUS),Ultrasounds, Pulsed,Vibration, Ultrasonic,Vibrations, Ultrasonic,Wave, Ultrasonic,Wave, Ultrasound,Waves, Ultrasonic,Waves, Ultrasound
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D045423 Microbubbles Small encapsulated gas bubbles (diameters of micrometers) that can be used as CONTRAST MEDIA, and in other diagnostic and therapeutic applications. Upon exposure to sufficiently intense ultrasound, microbubbles will cavitate, rupture, disappear, release gas content. Such characteristics of the microbubbles can be used to enhance diagnostic tests, dissolve blood clots, and deliver drugs or genes for therapy. Colloidal Gas Aphrons,Aphron, Colloidal Gas,Aphrons, Colloidal Gas,Colloidal Gas Aphron,Gas Aphron, Colloidal,Gas Aphrons, Colloidal,Microbubble
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D055495 Neurogenesis Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons. Neurogeneses

Related Publications

Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
October 2015, Scientific reports,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
February 2019, Expert opinion on drug delivery,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
April 2017, Scientific reports,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
August 2012, Journal of controlled release : official journal of the Controlled Release Society,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
December 2017, Neural regeneration research,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
February 2022, Journal of visualized experiments : JoVE,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
September 2010, Physics in medicine and biology,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
April 2018, Behavioural brain research,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
December 2021, Neurotoxicity research,
Skyler J Mooney, and Kairavi Shah, and Sharon Yeung, and Alison Burgess, and Isabelle Aubert, and Kullervo Hynynen
April 2023, Scientific reports,
Copied contents to your clipboard!